cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208332 Triangle of coefficients of polynomials u(n,x) jointly generated with A208333; see the Formula section.

This page as a plain text file.
%I A208332 #17 Jan 22 2020 05:15:16
%S A208332 1,1,1,1,1,4,1,1,6,10,1,1,8,16,28,1,1,10,22,52,76,1,1,12,28,80,156,
%T A208332 208,1,1,14,34,112,256,472,568,1,1,16,40,148,376,832,1408,1552,1,1,18,
%U A208332 46,188,516,1296,2640,4176,4240,1,1,20,52,232,676,1872,4320
%N A208332 Triangle of coefficients of polynomials u(n,x) jointly generated with A208333; see the Formula section.
%C A208332 Subtriangle of the triangle given by (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 3, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Apr 09 2012
%F A208332 u(n,x) = u(n-1,x) + x*v(n-1,x),
%F A208332 v(n,x) = 2x*u(n-1,x) + 2x*v(n-1,x),
%F A208332 where u(1,x)=1, v(1,x)=1.
%F A208332 From _Philippe Deléham_, Apr 09 2012: (Start)
%F A208332 As DELTA-triangle T(n,k) with 0 <= k <= n:
%F A208332 G.f.: (1 - 2*y*x + y*x^2 - 2*y^2*x^2)/(1 - x - 2*y*x + 2*y*x^2 - 2*y^2*x^2).
%F A208332 T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
%e A208332 First five rows:
%e A208332   1;
%e A208332   1, 1;
%e A208332   1, 1, 4;
%e A208332   1, 1, 6, 10;
%e A208332   1, 1, 8, 16, 28;
%e A208332 First five polynomials u(n,x):
%e A208332 1, 1 + x, 1 + x + 4x^2, 1 + x + 6x^2 + 10x^3, 1 + x + 8x^2 + 16x^3 + 28x^4.
%e A208332 From _Philippe Deléham_, Apr 09 2012: (Start)
%e A208332 (1, 0, -1, 1, 0, 0, 0, ...) DELTA (0, 1, 3, -2, 0, 0, 0, ...) begins:
%e A208332   1;
%e A208332   1, 0;
%e A208332   1, 1, 0;
%e A208332   1, 1, 4, 0;
%e A208332   1, 1, 6, 10, 0;
%e A208332   1, 1, 8, 16, 28, 0;
%e A208332   1, 1, 10, 22, 52, 76, 0;
%e A208332   1, 1, 12, 28, 80, 156, 208, 0;
%e A208332   ... (End)
%t A208332 u[1, x_] := 1; v[1, x_] := 1; z = 13;
%t A208332 u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
%t A208332 v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x];
%t A208332 Table[Expand[u[n, x]], {n, 1, z/2}]
%t A208332 Table[Expand[v[n, x]], {n, 1, z/2}]
%t A208332 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t A208332 TableForm[cu]
%t A208332 Flatten[%]  (* A208332 *)
%t A208332 Table[Expand[v[n, x]], {n, 1, z}]
%t A208332 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t A208332 TableForm[cv]
%t A208332 Flatten[%]  (* A208333 *)
%Y A208332 Cf. A208332.
%K A208332 nonn,tabl
%O A208332 1,6
%A A208332 _Clark Kimberling_, Feb 26 2012