cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208333 Triangle of coefficients of polynomials v(n,x) jointly generated with A208332; see the Formula section.

Original entry on oeis.org

1, 0, 4, 0, 2, 10, 0, 2, 6, 28, 0, 2, 6, 24, 76, 0, 2, 6, 28, 80, 208, 0, 2, 6, 32, 100, 264, 568, 0, 2, 6, 36, 120, 360, 840, 1552, 0, 2, 6, 40, 140, 464, 1232, 2624, 4240, 0, 2, 6, 44, 160, 576, 1680, 4128, 8064, 11584, 0, 2, 6, 48, 180, 696, 2184, 5952
Offset: 1

Views

Author

Clark Kimberling, Feb 26 2012

Keywords

Comments

As triangle T(n,k) with 0 <= k <= n, it is (0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (4, -3/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 28 2012

Examples

			First five rows:
  1;
  0,  4;
  0,  2, 10;
  0,  2,  6, 28;
  0,  2,  6, 24, 76;
First five polynomials u(n,x):
  1
      4x
      2x + 10x^2
      2x +  6x^2 + 28x^3
      2x +  6x^2 + 24x^3 + 76x^4.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208332 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208333 *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 28 2012: (Start)
As triangle with 0 <= k <= n:
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) + 2*T(n-2,k-2) with T(0,0) = 1, T(1,0) = 0, T(1,1) = 4 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-x+2*y*x)/(1-x-2*y*x+2*y*x^2-2*y^2*x^2).
T(n,n) = A026150(n+1).
Sum_{k=0..n} T(n,k) = A003946(n). (End)