A208333 Triangle of coefficients of polynomials v(n,x) jointly generated with A208332; see the Formula section.
1, 0, 4, 0, 2, 10, 0, 2, 6, 28, 0, 2, 6, 24, 76, 0, 2, 6, 28, 80, 208, 0, 2, 6, 32, 100, 264, 568, 0, 2, 6, 36, 120, 360, 840, 1552, 0, 2, 6, 40, 140, 464, 1232, 2624, 4240, 0, 2, 6, 44, 160, 576, 1680, 4128, 8064, 11584, 0, 2, 6, 48, 180, 696, 2184, 5952
Offset: 1
Examples
First five rows: 1; 0, 4; 0, 2, 10; 0, 2, 6, 28; 0, 2, 6, 24, 76; First five polynomials u(n,x): 1 4x 2x + 10x^2 2x + 6x^2 + 28x^3 2x + 6x^2 + 24x^3 + 76x^4.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 13; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208332 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208333 *)
Formula
u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 28 2012: (Start)
As triangle with 0 <= k <= n:
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) + 2*T(n-2,k-2) with T(0,0) = 1, T(1,0) = 0, T(1,1) = 4 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-x+2*y*x)/(1-x-2*y*x+2*y*x^2-2*y^2*x^2).
T(n,n) = A026150(n+1).
Sum_{k=0..n} T(n,k) = A003946(n). (End)
Comments