A208334 Triangle of coefficients of polynomials u(n,x) jointly generated with A208335; see the Formula section.
1, 1, 1, 1, 3, 1, 1, 6, 4, 1, 1, 10, 11, 6, 1, 1, 15, 25, 21, 7, 1, 1, 21, 50, 57, 30, 9, 1, 1, 28, 91, 133, 99, 45, 10, 1, 1, 36, 154, 280, 275, 168, 58, 12, 1, 1, 45, 246, 546, 675, 523, 250, 78, 13, 1, 1, 55, 375, 1002, 1509, 1433, 885, 370, 95, 15, 1, 1, 66, 550
Offset: 1
Examples
First five rows: 1; 1, 1; 1, 3, 1; 1, 6, 4, 1; 1, 10, 11, 6, 1; First five polynomials u(n,x): 1; 1 + x; 1 + 3x + x^2; 1 + 6x + 4x^2 + x^3; 1 + 10x + 11x^2 + 6x^3 + x^4; From _Philippe Deléham_, Mar 26 2012: (Start) (1, 0, 1, 0, 0, 0, ...) DELTA (0, 1, 0, -1, 0, 0, ...) begins: 1; 1, 0; 1, 1, 0; 1, 3, 1, 0; 1, 6, 4, 1, 0; 1, 10, 11, 6, 1, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 13; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208334 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208335 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* u row sums *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* v row sums *) Table[u[n, x] /. x -> -1, {n, 1, z}](* u alt. row sums *) Table[v[n, x] /. x -> -1, {n, 1, z}](* v alt. row sums *)
Formula
u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 26 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-x-y^2*x^2)/(1-2*x-y*x^2+x^2-y^2*x^2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
Comments