cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208334 Triangle of coefficients of polynomials u(n,x) jointly generated with A208335; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 4, 1, 1, 10, 11, 6, 1, 1, 15, 25, 21, 7, 1, 1, 21, 50, 57, 30, 9, 1, 1, 28, 91, 133, 99, 45, 10, 1, 1, 36, 154, 280, 275, 168, 58, 12, 1, 1, 45, 246, 546, 675, 523, 250, 78, 13, 1, 1, 55, 375, 1002, 1509, 1433, 885, 370, 95, 15, 1, 1, 66, 550
Offset: 1

Views

Author

Clark Kimberling, Feb 26 2012

Keywords

Comments

row sums, u(n,1): A000129
row sums, v(n,1): A001333
alternating row sums, u(n,-1): 1,0,-1,-2,-3,-4,-5,-6,...
alternating row sums, v(n,-1): 1,1,1,1,1,1,1,1,1,1,1,...
Subtriangle of the triangle (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012
Up to reflection at the vertical axis, the triangle of numbers given here coincides with the triangle given in A209415, i.e., the numbers are the same just read row-wise in the opposite direction. - Christine Bessenrodt, Jul 21 2012

Examples

			First five rows:
  1;
  1,  1;
  1,  3,  1;
  1,  6,  4, 1;
  1, 10, 11, 6, 1;
First five polynomials u(n,x):
  1;
  1 +   x;
  1 +  3x +   x^2;
  1 +  6x +  4x^2 +  x^3;
  1 + 10x + 11x^2 + 6x^3 + x^4;
From _Philippe Deléham_, Mar 26 2012: (Start)
(1, 0, 1, 0, 0, 0, ...) DELTA (0, 1, 0, -1, 0, 0, ...) begins:
  1;
  1,  0;
  1,  1,  0;
  1,  3,  1,  0;
  1,  6,  4,  1,  0;
  1, 10, 11,  6,  1,  0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208334 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208335  *)
    Table[u[n, x] /. x -> 1, {n, 1, z}] (* u row sums *)
    Table[v[n, x] /. x -> 1, {n, 1, z}] (* v row sums *)
    Table[u[n, x] /. x -> -1, {n, 1, z}](* u alt. row sums *)
    Table[v[n, x] /. x -> -1, {n, 1, z}](* v alt. row sums *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 26 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-x-y^2*x^2)/(1-2*x-y*x^2+x^2-y^2*x^2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)