cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208337 Triangle of coefficients of polynomials v(n,x) jointly generated with A208836; see the Formula section.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 7, 5, 1, 5, 12, 15, 8, 1, 6, 18, 31, 30, 13, 1, 7, 25, 54, 73, 58, 21, 1, 8, 33, 85, 145, 162, 109, 34, 1, 9, 42, 125, 255, 361, 344, 201, 55, 1, 10, 52, 175, 413, 701, 850, 707, 365, 89, 1, 11, 63, 236, 630, 1239, 1806, 1918, 1416, 655
Offset: 1

Views

Author

Clark Kimberling, Feb 26 2012

Keywords

Comments

coef. of x(n-1) in u(n,x): A000045(n), Fibonacci numbers
coef. of x(n-1) in v(n,x): A000045(n+1)
row sums, u(n,1): A000129
row sums, v(n,1): A001333
alternating row sums, u(n,-1): 1,0,1,0,1,0,1,0,1,0,...
alternating row sums, v(n,-1): 1,-1,1,-1,1,-1,1,-1,...
Subtriangle of the triangle given by (1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 09 2012

Examples

			First five rows:
  1
  1...2
  1...3...3
  1...4...7....5
  1...5...12...15...8
First five polynomials v(n,x):
  1
  1 + 2x
  1 + 3x + 3x^2
  1 + 4x + 7x^2 + 5x^3
  1 + 5x + 12x^2 + 15x^3 + 8x^4
(1, 0, -1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, ...) begins :
  1
  1, 0
  1, 2, 0
  1, 3, 3, 0
  1, 4, 7, 5, 0
  1, 5, 12, 15, 8, 0
  1, 6, 18, 31, 30, 13, 0
  1, 7, 25, 54, 73, 58, 21, 0 . _Philippe Deléham_, Apr 09 2012
		

Crossrefs

Cf. A208336.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208336 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208337 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}] (*u row sums*)
    Table[v[n, x] /. x -> 1, {n, 1, z}] (*v row sums*)
    Table[u[n, x] /. x -> -1, {n, 1, z}](*u alt. row sums*)
    Table[v[n, x] /. x -> -1, {n, 1, z}](*v alt. row sums*)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 09 2012: (Start)
As DELTA-triangle T(n,k) with 0<=k<=n :
G.f.: (1-y*x+y*x^2-y^2*x^2)/(1-x-y*x-y^2*x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(2,1) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)
G.f.: -(1+x*y)*x*y/(-1+x*y+x^2*y^2+x). - R. J. Mathar, Aug 11 2015