This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208338 #14 Jan 24 2020 03:27:17 %S A208338 1,1,1,1,2,3,1,3,7,7,1,4,12,20,17,1,5,18,40,57,41,1,6,25,68,129,158, %T A208338 99,1,7,33,105,243,399,431,239,1,8,42,152,410,824,1200,1160,577,1,9, %U A208338 52,210,642,1506,2692,3528,3089,1393,1,10,63,280,952,2532,5290 %N A208338 Triangle of coefficients of polynomials u(n,x) jointly generated with A208339; see the Formula section. %C A208338 Subtriangle of the triangle given by (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 2, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Apr 09 2012 %F A208338 u(n,x) = u(n-1,x) + x*v(n-1,x), %F A208338 v(n,x) = (x+1)*u(n-1,x) + 2x*v(n-1,x), %F A208338 where u(1,x)=1, v(1,x)=1. %F A208338 From _Philippe Deléham_, Apr 09 2012: (Start) %F A208338 As DELTA-triangle T(n,k) with 0 <= k <= n: %F A208338 G.f.: (1-2*y*x-y^2*x^2)/(1-x-2*y*x+y*x^2-y^2*x^2). %F A208338 T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End) %e A208338 First five rows: %e A208338 1; %e A208338 1, 1; %e A208338 1, 2, 3; %e A208338 1, 3, 7, 7; %e A208338 1, 4, 12, 20, 17; %e A208338 First five polynomials u(n,x): %e A208338 1 %e A208338 1 + x %e A208338 1 + 2x + 3x^2 %e A208338 1 + 3x + 7x^2 + 7x^3 %e A208338 1 + 4x + 12x^2 + 20x^3 + 17x^4 %e A208338 From _Philippe Deléham_, Apr 09 2012: (Start) %e A208338 (1, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 2, -1, 0, 0, 0, ...) begins: %e A208338 1; %e A208338 1, 0; %e A208338 1, 1, 0; %e A208338 1, 2, 3, 0; %e A208338 1, 3, 7, 7, 0; %e A208338 1, 4, 12, 20, 17, 0; %e A208338 1, 5, 18, 40, 57, 41, 0; (End) %t A208338 u[1, x_] := 1; v[1, x_] := 1; z = 13; %t A208338 u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; %t A208338 v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x]; %t A208338 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208338 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208338 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208338 TableForm[cu] %t A208338 Flatten[%] (* A208338 *) %t A208338 Table[Expand[v[n, x]], {n, 1, z}] %t A208338 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208338 TableForm[cv] %t A208338 Flatten[%] (* A208339 *) %Y A208338 Cf. A208339. %K A208338 nonn,tabl %O A208338 1,5 %A A208338 _Clark Kimberling_, Feb 27 2012