cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208339 Triangle of coefficients of polynomials v(n,x) jointly generated with A208838; see the Formula section.

Original entry on oeis.org

1, 1, 3, 1, 4, 7, 1, 5, 13, 17, 1, 6, 20, 40, 41, 1, 7, 28, 72, 117, 99, 1, 8, 37, 114, 241, 332, 239, 1, 9, 47, 167, 425, 769, 921, 577, 1, 10, 58, 232, 682, 1492, 2368, 2512, 1393, 1, 11, 70, 310, 1026, 2598, 5008, 7096, 6761, 3363, 1, 12, 83, 402, 1472
Offset: 1

Views

Author

Clark Kimberling, Feb 27 2012

Keywords

Comments

Subtriangle of the triangle given by (1, 0, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 3, -2/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 27 2012

Examples

			First five rows:
1
1...3
1...4...7
1...5...13...17
1...6...20...40...41
First five polynomials v(n,x):
1
1 + 3x
1 + 4x + 7x^2
1 + 5x + 13x^2 + 17x^3
1 + 6x + 20x^2 + 40x^3 + 41x^4
Contribution from _Philippe Deléham_, Mar 27 2012: (Start)
(1, 0, -2/3, 2/3, 0, 0,...) DELTA (0, 3, -2/3, -1/3, 0, 0,...) begins :
1
1, 0
1, 3, 0
1, 4, 7, 0
1, 5, 13, 17, 0
1, 6, 20, 40, 41, 0. (End)
		

Crossrefs

Cf. A208338.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A208338 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A208339 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
Contribution from Philippe Deléham, Mar 27 2012: (Start)
As DELTA-triangle T(n,k) with 0<=k<=n:
G.f.: (1-2*y*x+2*y*x^2-y^2*x^2)/(1-x-2*y*x+y*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(2,1) = 3, T(1,1) = T(2,2) = 0 nd T(n,k) = 0 if k<0 or if k>n. (End)
G.f.: -(1+x*y)*x*y/(-1+2*x*y-x^2*y+x^2*y^2+x). - R. J. Mathar, Aug 11 2015