This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208344 #24 Jun 06 2024 08:23:51 %S A208344 1,1,1,1,1,3,1,1,4,7,1,1,5,10,17,1,1,6,13,27,41,1,1,7,16,38,71,99,1,1, %T A208344 8,19,50,106,186,239,1,1,9,22,63,146,294,484,577,1,1,10,25,77,191,424, %U A208344 806,1253,1393,1,1,11,28,92,241,577,1212,2191,3229,3363,1,1,12 %N A208344 Triangle of coefficients of polynomials u(n,x) jointly generated with A208345; see the Formula section. %C A208344 Row sums, u(n,1): (1,2,5,13,...), odd-indexed Fibonacci numbers. %C A208344 Row sums, v(n,1): (1,3,8,21,...), even-indexed Fibonacci numbers. %C A208344 Subtriangle of the triangle given by (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 2, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Apr 09 2012 %F A208344 u(n,x) = u(n-1,x) + x*v(n-1,x), %F A208344 v(n,x) = x*u(n-1,x) + 2x*v(n-1,x), %F A208344 where u(1,x)=1, v(1,x)=1. %F A208344 From _Philippe Deléham_, Apr 09 2012: (Start) %F A208344 As DELTA-triangle T(n,k) with 0 <= k <= n: %F A208344 G.f.: (1-2*y*x+y*x^2-y^2*x^2)/(1-x-2*y*x+2*y*x^2-y^2*x^2). %F A208344 T(n,k) = T(n-1,k) + 2*T(n-1,k-1) -2*T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End) %F A208344 Working with an offset of 0, the row reversed triangle is the Riordan array ( (1 - x)/(1 - 2*x - x^2), x*(1 - 2*x)/(1 - 2*x - x^2) ) with g.f. (1 - x)/(1 - (2 + y)*x - (1 - 2*y)*x^2) = 1 + (1 + y)*x + (3 + y + y^2)*x^2 + (7 + 4*y + y^2 + y^3)*x^3 + .... - _Peter Bala_, Jun 01 2024 %e A208344 First five rows: %e A208344 1; %e A208344 1, 1; %e A208344 1, 1, 3; %e A208344 1, 1, 4, 7; %e A208344 1, 1, 5, 10, 17; %e A208344 First five polynomials u(n,x): %e A208344 1 %e A208344 1 + x %e A208344 1 + x + 3x^2 %e A208344 1 + x + 4x^2 + 7x^3 %e A208344 1 + x + 5x^2 + 10x^3 + 17x^4. %e A208344 From _Philippe Deléham_, Apr 09 2012: (Start) %e A208344 (1, 0, -1, 1, 0, 0, ...) DELTA (0, 1, 2, -1, 0, 0, ...) begins: %e A208344 1; %e A208344 1, 0; %e A208344 1, 1, 0; %e A208344 1, 1, 3, 0; %e A208344 1, 1, 4, 7, 0; %e A208344 1, 1, 5, 10, 17, 0; %e A208344 1, 1, 6, 13, 27, 41, 0; (End) %t A208344 u[1, x_] := 1; v[1, x_] := 1; z = 13; %t A208344 u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; %t A208344 v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x]; %t A208344 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208344 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208344 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208344 TableForm[cu] %t A208344 Flatten[%] (* A208344 *) %t A208344 Table[Expand[v[n, x]], {n, 1, z}] %t A208344 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208344 TableForm[cv] %t A208344 Flatten[%] (* A208345 *) %t A208344 Table[u[n, x] /. x -> 1, {n, 1, z}] %t A208344 Table[v[n, x] /. x -> 1, {n, 1, z}] %Y A208344 Cf. A208345, A208510. %K A208344 nonn,tabl %O A208344 1,6 %A A208344 _Clark Kimberling_, Feb 25 2012 %E A208344 a(69) corrected by _Georg Fischer_, Sep 03 2021