cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208361 "1-ply" palindromic primes; see Comments.

This page as a plain text file.
%I A208361 #28 Jun 03 2013 00:31:26
%S A208361 2,3,5,7,100030001,100050001,100060001,100111001,100131001,100161001,
%T A208361 100404001,100656001,100707001,100767001,100888001,100999001,
%U A208361 101030101,101060101,101141101,101171101,101282101,101292101,101343101,101373101,101414101,101424101,101474101
%N A208361 "1-ply" palindromic primes; see Comments.
%C A208361 From the Ribenboim book: palindromic primes whose length is not a palindromic prime.
%C A208361 a(42046) = 999727999 and a(42047) = 1000008000001. [_Charles R Greathouse IV_, Feb 26 2012]
%D A208361 Paulo Ribenboim, The New Book of Prime Number Records, Springer-Verlag New York Inc., 1996, p. 160-161.
%H A208361 Alvin Hoover Belt and T. D. Noe, <a href="/A208361/b208361.txt">Table of n, a(n) for n = 1..10000</a> (first 100 terms from Alvin Hoover Belt)
%e A208361 2 is a palindromic prime of 1 digit, but 1 is not prime, therefore 2 is a 1-ply palindromic prime.
%e A208361 100050001 is a palindromic prime of 9 digits, but 9 is composite, therefore 100050001 is a 1-ply palindromic prime.
%t A208361 t = {2, 3, 5, 7}; n = 10000; While[n <= 99999 && Length[t] < 100, n = n + 1; d = IntegerDigits[n]; d2 = FromDigits[Join[d, Rest[Reverse[d]]]]; If[PrimeQ[d2], AppendTo[t, d2]]]; t (* _T. D. Noe_, Jun 03 2013 *)
%Y A208361 Cf. A109830.
%K A208361 nonn,base
%O A208361 1,1
%A A208361 _Alvin Hoover Belt_, Feb 25 2012
%E A208361 a(5)-a(26) from _Charles R Greathouse IV_, Feb 26 2012