A208379 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 1 1 1 horizontally and 0 0 1 and 1 0 1 vertically.
2, 4, 4, 6, 16, 6, 10, 36, 36, 8, 16, 100, 72, 64, 10, 26, 256, 240, 108, 100, 12, 42, 676, 704, 420, 144, 144, 14, 68, 1764, 2080, 1344, 640, 180, 196, 16, 110, 4624, 6216, 4212, 2176, 900, 216, 256, 18, 178, 12100, 18496, 13860, 7072, 3200, 1200, 252, 324, 20, 288
Offset: 1
Examples
Some solutions for n=4 k=3 ..0..1..0....0..1..1....1..1..0....0..0..1....0..0..1....1..0..1....1..0..0 ..1..1..0....0..1..1....1..1..0....0..1..1....1..0..1....1..1..0....1..0..0 ..1..1..0....0..0..1....1..1..0....0..1..0....0..0..1....0..1..0....1..0..0 ..1..0..0....0..0..1....1..1..0....0..1..0....0..0..1....0..1..0....1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1463
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 36*n - 36 for n>1
k=4: a(n) = 20*n^2 + 40*n - 60 for n>1
k=5: a(n) = 96*n^2 - 32*n - 64 for n>1
k=6: a(n) = 364*n^2 - 416*n + 52 for n>1
k=7: a(n) = 84*n^3 + 840*n^2 - 1344*n + 420 for n>1
Empirical for row n:
n=1: a(k)=a(k-1)+a(k-2)
n=2: a(k)=2*a(k-1)+2*a(k-2)-a(k-3)
n=3: a(k)=a(k-1)+4*a(k-2)+5*a(k-3)+2*a(k-4)-a(k-5)+a(k-6) for k>8
n=4: a(k)=a(k-1)+4*a(k-2)+9*a(k-3)+5*a(k-4)-2*a(k-5)+4*a(k-6) for k>8
n=5: a(k)=a(k-1)+4*a(k-2)+13*a(k-3)+8*a(k-4)-3*a(k-5)+9*a(k-6) for k>8
n=6: a(k)=a(k-1)+4*a(k-2)+17*a(k-3)+11*a(k-4)-4*a(k-5)+16*a(k-6) for k>8
n=7: a(k)=a(k-1)+4*a(k-2)+21*a(k-3)+14*a(k-4)-5*a(k-5)+25*a(k-6) for k>8
Comments