A208429 Number of nX3 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).
5, 54, 129, 339, 1123, 4155, 15273, 55715, 205199, 758647, 2804053, 10360467, 38311103, 141717367, 524247989, 1939302323, 7174276855, 26541315667, 98190495765, 363259275051, 1343896481903, 4971825005443, 18393576694105
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0....0..1..2....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0 ..2..1..2....1..2..1....1..1..1....1..2..1....1..1..2....0..0..2....1..0..2 ..0..1..0....0..1..0....2..1..2....2..2..2....1..2..2....1..2..2....1..1..2 ..2..1..2....1..0..1....0..2..0....0..0..0....0..0..2....1..1..2....1..0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 3*a(n-1) +8*a(n-2) -18*a(n-3) -17*a(n-5) -116*a(n-6) +256*a(n-7) +184*a(n-8) -335*a(n-9) +260*a(n-10) -644*a(n-11) -368*a(n-12) +2013*a(n-13) -564*a(n-14) -1664*a(n-15) -1063*a(n-16) +1284*a(n-17) +3156*a(n-18) -1962*a(n-19) -256*a(n-20) +1020*a(n-21) -1448*a(n-22) -96*a(n-23) +144*a(n-24) +352*a(n-25) -128*a(n-26) for n>28
Comments