A208459 Triangle T_x = T(n,k) given by (0, 1/x, 1-1/x, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (x, 1/x-1, -1/x, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938, for x = 0.
1, 0, 0, 0, 1, 1, 0, 1, 0, -1, 0, 1, 0, 1, 2, 0, 1, 0, 2, 0, -3, 0, 1, 0, 3, -1, 0, 5, 0, 1, 0, 4, -2, 3, 2, -8, 0, 1, 0, 5, -3, 7, -2, -5, 13, 0, 1, 0, 6, -4, 12, -8, 2, 12, -21, 0, 1, 0, 7, -5, 18, -16, 15, 3, -25, 34
Offset: 0
Examples
Triangle begins : 1 0, 0 0, 1, 1 0, 1, 0, -1 0, 1, 0, 1, 2 0, 1, 0, 2, 0, -3 0, 1, 0, 3, -1, 0, 5 0, 1, 0, 4, -2, 3, 2, -8 0, 1, 0, 5, -3, 7, -2, -5, 13 0, 1, 0, 6, -4, 12, -8, 2, 12, -21 0, 1, 0, 7, -5, 18, -16, 15, 3, -25, 34
Formula
T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) with T(0,0) = 1 T(1,0) = 0, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
G.f.: (1-x+y*x)/(1-x+y*x- y^2*x^2-y*x^2).
Comments