This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208475 #21 Mar 11 2015 07:27:17 %S A208475 1,2,2,7,2,3,10,10,3,4,23,12,11,4,5,36,30,17,14,5,6,65,40,35,18,17,6, %T A208475 7,94,82,49,44,22,20,7,8,160,110,93,58,48,26,23,8,9,230,190,133,108, %U A208475 70,56,30,26,9,10,356,260,217,148,124,76,64,34,29,10,11 %N A208475 Triangle read by rows: T(n,k) = total sum of odd/even parts >= k in all partitions of n, if k is odd/even. %C A208475 Essentially this sequence is related to A206561 in the same way as A206563 is related to A181187. See the calculation in the example section of A206563. %H A208475 Alois P. Heinz, <a href="/A208475/b208475.txt">Rows n = 1..141, flattened</a> %e A208475 Triangle begins: %e A208475 1; %e A208475 2, 2; %e A208475 7, 2, 3; %e A208475 10, 10, 3, 4; %e A208475 23, 12, 11, 4, 5; %e A208475 36, 30, 17, 14, 5, 6; %p A208475 p:= (f, g)-> zip((x, y)-> x+y, f, g, 0): %p A208475 b:= proc(n, i) option remember; local f, g; %p A208475 if n=0 then [1] %p A208475 elif i=1 then [1, n] %p A208475 else f:= b(n, i-1); g:= `if`(i>n, [0], b(n-i, i)); %p A208475 p (p (f, g), [0$i, g[1]]) %p A208475 fi %p A208475 end: %p A208475 T:= proc(n) local l; %p A208475 l:= b(n, n); %p A208475 seq (add (l[i+2*j+1]*(i+2*j), j=0..(n-i)/2), i=1..n) %p A208475 end: %p A208475 seq (T(n), n=1..14); # _Alois P. Heinz_, Mar 21 2012 %t A208475 p[f_, g_] := With[{m = Max[Length[f], Length[g]]}, PadRight[f, m, 0] + PadRight[g, m, 0]]; b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1}, i == 1, {1, n}, True, f = b[n, i-1]; g = If[i>n, {0}, b[n-i, i]]; p[p[f, g], Append[Array[0&, i], g[[1]]]]]]; T[n_] := Module[{l}, l = b[n, n]; Table[Sum[l[[i+2j+1]]*(i+2j), {j, 0, (n-i)/2}], {i, 1, n}]]; Table[T[n], {n, 1, 14}] // Flatten (* _Jean-François Alcover_, Mar 11 2015, after _Alois P. Heinz_ *) %Y A208475 Column 1-2: A066967, A066966. Right border is A000027. %Y A208475 Cf. A138785, A181187, A206561, A206563, A208476. %K A208475 nonn,tabl %O A208475 1,2 %A A208475 _Omar E. Pol_, Feb 28 2012 %E A208475 More terms from _Alois P. Heinz_, Mar 21 2012