cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208477 Difference between the sum of odd parts and the sum of even parts in all the partitions of n.

This page as a plain text file.
%I A208477 #23 Aug 29 2016 09:27:11
%S A208477 0,1,0,5,0,11,6,25,12,50,40,96,80,173,170,320,316,545,590,930,1020,
%T A208477 1552,1760,2537,2900,4066,4736,6450,7540,10045,11856,15482,18280,
%U A208477 23555,27920,35461,42032,52805,62662,77955,92380,113963,135040,165295,195540,237866
%N A208477 Difference between the sum of odd parts and the sum of even parts in all the partitions of n.
%H A208477 Alois P. Heinz, <a href="/A208477/b208477.txt">Table of n, a(n) for n = 0..1000</a>
%F A208477 a(n) = A066967(n) - A066966(n).
%F A208477 G.f.: (Sum_{i>0} (2*i-1)*x^(2*i-1)/(1-x^(2*i-1))-2*i*x^(2*i)/(1-x^(2*i))) / Product_{j>0} (1-x^j). - _Alois P. Heinz_, Mar 10 2012
%p A208477 b:= proc(n,i) option remember; local g, h;
%p A208477       if n=0 then [1, 0]
%p A208477     elif i<1 then [0, 0]
%p A208477     else g:= b(n, i-1);
%p A208477          h:= `if`(i>n, [0, 0], b(n-i, i));
%p A208477          [g[1]+h[1], g[2]+h[2] +h[1]*i*(2*(i mod 2)-1)]
%p A208477       fi
%p A208477     end:
%p A208477 a:= n-> b(n, n)[2]:
%p A208477 seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 10 2012
%t A208477 Map[Total[Select[#, OddQ]] - Total[Select[#, EvenQ]] &[Flatten[IntegerPartitions[#]]] &, -1 + Range[30]] (* _Peter J. C. Moses_, Mar 14 2014 *)
%t A208477 max = 60; s = Sum[x^(2i) (x^(2i) - 2i (x-1) - 1)/(x + x^(4i) - (x+1) x^(2i) ), {i, 1, Floor[max/2]}]/QPochhammer[x] + O[x]^max; CoefficientList[s, x] (* _Jean-François Alcover_, Aug 29 2016, after _Alois P. Heinz_ *)
%Y A208477 Cf. A066186, A209423.
%K A208477 nonn
%O A208477 0,4
%A A208477 _Omar E. Pol_, Mar 10 2012
%E A208477 More terms from _Alois P. Heinz_, Mar 10 2012