cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208479 Total sum of the numbers of partitions with positive k-th ranks of all partitions of n.

This page as a plain text file.
%I A208479 #11 Mar 30 2012 17:37:36
%S A208479 0,2,3,6,10,18,27,45,65,99,141,206,285,403,549,754,1011,1364,1800,
%T A208479 2388,3116,4072,5257,6791,8678,11093,14058,17800,22380,28111,35087,
%U A208479 43748,54256,67189,82831,101962,124997,153011,186632,227281,275905,334418,404159,487714
%N A208479 Total sum of the numbers of partitions with positive k-th ranks of all partitions of n.
%C A208479 For the definition of k-th rank see A208478.
%e A208479 For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are
%e A208479 ----------------------------------------------------------
%e A208479 Partitions    First      Second       Third      Fourth
%e A208479 of 4          rank        rank        rank        rank
%e A208479 ----------------------------------------------------------
%e A208479 4           4-1 =  3    0-1 = -1    0-1 = -1    0-1 = -1
%e A208479 3+1         3-2 =  1    1-1 =  0    0-1 = -1    0-0 =  0
%e A208479 2+2         2-2 =  0    2-2 =  0    0-0 =  0    0-0 =  0
%e A208479 2+1+1       2-3 = -1    1-1 =  0    1-0 =  1    0-0 =  0
%e A208479 1+1+1+1     1-4 = -3    1-0 =  1    1-0 =  1    1-0 =  1
%e A208479 ----------------------------------------------------------
%e A208479 The number of partitions of 4 with positive k-th ranks are 2, 1, 2, 1 so the total sum is a(4) = 2+1+2+1 = 6.
%Y A208479 Row sums of A208478.
%Y A208479 Cf. A208482, A208483.
%K A208479 nonn
%O A208479 1,2
%A A208479 _Omar E. Pol_, Mar 07 2012
%E A208479 More terms from _Alois P. Heinz_, Mar 11 2012