This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208482 #54 Mar 30 2012 17:37:59 %S A208482 0,1,1,2,1,1,4,1,2,1,7,1,3,2,1,12,2,5,4,2,1,18,3,6,6,4,2,1,29,6,9,10, %T A208482 7,4,2,1,42,9,11,13,11,7,4,2,1,63,16,15,19,17,12,7,4,2,1,89,24,18,25, %U A208482 24,18,12,7,4,2,1,128,39,24,36,34,28,19,12,7,4,2,1 %N A208482 Triangle read by rows: T(n,k) = sum of positive k-th ranks of all partitions of n. %C A208482 For the definition of the k-th rank see A208478. %C A208482 It appears that the sum of the k-th ranks of all partitions of n is equal to zero. %C A208482 It appears that reversed rows converge to A000070, the same as A208478. - Omar E. Pol, Mar 10 2012 %H A208482 Alois P. Heinz, <a href="/A208482/b208482.txt">Rows n = 1..44, flattened</a> %e A208482 For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are %e A208482 ---------------------------------------------------------- %e A208482 Partitions First Second Third Fourth %e A208482 of 4 rank rank rank rank %e A208482 ---------------------------------------------------------- %e A208482 4 4-1 = 3 0-1 = -1 0-1 = -1 0-1 = -1 %e A208482 3+1 3-2 = 1 1-1 = 0 0-1 = -1 0-0 = 0 %e A208482 2+2 2-2 = 0 2-2 = 0 0-0 = 0 0-0 = 0 %e A208482 2+1+1 2-3 = -1 1-1 = 0 1-0 = 1 0-0 = 0 %e A208482 1+1+1+1 1-4 = -3 1-0 = 1 1-0 = 1 1-0 = 1 %e A208482 ---------------------------------------------------------- %e A208482 The sums of positive k-th ranks of the partitions of 4 are 4, 1, 2, 1 so row 4 lists 4, 1, 2, 1. %e A208482 Triangle begins: %e A208482 0; %e A208482 1, 1; %e A208482 2, 1, 1; %e A208482 4, 1, 2, 1; %e A208482 7, 1, 3, 2, 1; %e A208482 12, 2, 5, 4, 2, 1; %e A208482 18, 3, 6, 6, 4, 2, 1; %e A208482 29, 6, 9, 10, 7, 4, 2, 1; %e A208482 42, 9, 11, 13, 11, 7, 4, 2, 1; %e A208482 63, 16, 15, 19, 17, 12, 7, 4, 2, 1; %e A208482 89, 24, 18, 25, 24, 18, 12, 7, 4, 2, 1; %e A208482 128, 39, 24, 36, 34, 28, 19, 12, 7, 4, 2, 1; %Y A208482 Column 1 is A209616. Row sums give A208483. %Y A208482 Cf. A006128, A063995, A064173, A105805, A181187, A194547, A194549, A195822, A208478. %K A208482 nonn,tabl %O A208482 1,4 %A A208482 _Omar E. Pol_, Mar 07 2012 %E A208482 Terms a(1)-a(22) confirmed and additional terms added by _John W. Layman_, Mar 10 2012