cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208494 Least integer m>1 such that those k! mod m with k=1,...,n are pairwise distinct.

Original entry on oeis.org

2, 2, 3, 7, 10, 13, 13, 13, 31, 37, 37, 37, 61, 61, 61, 83, 83, 83, 127, 127, 127, 127, 127, 179, 179, 179, 179, 179, 193, 193, 193, 193, 193, 193, 193, 193, 277, 277, 277, 277, 277, 277, 383, 383, 383, 383, 383, 479, 479, 479, 479, 479, 479, 479, 541, 541, 541, 541, 541, 541, 541, 541, 541, 641, 641, 641, 641, 641, 641, 641, 641, 641, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 877, 1013, 1013, 1013, 1013, 1013, 1013, 1013, 1013, 1013, 1013, 1013
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 27 2012

Keywords

Comments

On Feb 27 2012 Zhi-Wei Sun conjectured that a(n) is a prime with the only exception a(5)=10, and that a(n) does not exceed n^2/2 for all n=2,3,4,... He also conjectured that max{n>0: 1!,...,n! are pairwise incongruent mod p} is asymptotically equivalent to sqrt(p), where p is an odd prime.
He guessed that if we replace k! in the definition of a(n) by (-1)^k*k! then a(n) is a prime with the only exception a(3)=6. If we replace k! in the definition of a(n) by (2k)! or (-1)^k*(2k)!, then Zhi-Wei Sun conjectured that a(n) will take only prime values.
He also has similar conjectures involving (r*k)! or (-1)^k*(r*k)! with r>2.

Examples

			For n=5 we have a(5)=10 since 1!=1, 2!=2, 3!=6, 4!=24 and 5!=120 are pairwise incongruent mod 10 but not pairwise incongruent modulo any of 2,3,...,9.
		

Crossrefs

Programs

  • Mathematica
    R[n_,i_]:=Union[Table[Mod[k!,i],{k,1,n}]]
    Do[Do[If[Length[R[n,i]]==n,Print[n," ",i];Goto[aa]],{i,2,Max[n^2,2]}];
    Print[n];Label[aa];Continue,{n,1,1000}]
  • PARI
    has(n,m)=my(t=1); #Set(vector(n,i,t=(t*i)%m))==n
    a(n,last=2)=while(!has(n,last), last++); last
    t=2;vector(100,n,t=a(n,t)) \\ Charles R Greathouse IV, Jul 31 2016