cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A208496 Number of n X 3 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

6, 36, 60, 126, 234, 456, 896, 1722, 3360, 6512, 12642, 24570, 47644, 92568, 179690, 348800, 677340, 1314846, 2552850, 4956336, 9622272, 18681842, 36269696, 70416640, 136712226, 265421170, 515308500, 1000454184, 1942349698, 3771013664
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Comments

Column 3 of A208501.

Examples

			Some solutions for n=4:
..0..1..1....1..0..1....0..1..1....0..1..1....0..1..0....1..0..0....0..1..0
..0..1..1....1..1..1....0..1..1....1..0..0....0..1..1....0..1..1....1..1..0
..1..0..0....0..1..0....1..0..0....1..1..0....1..0..1....0..1..1....1..0..1
..1..0..0....1..0..1....1..1..1....0..1..1....1..1..0....1..0..0....0..1..1
		

Crossrefs

Cf. A208501.

Formula

Empirical: a(n) = a(n-2) + 4*a(n-3) + 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + a(n-7) + a(n-9) for n>11.
Empirical g.f.: 2*x*(3 + 18*x + 27*x^2 + 33*x^3 + 9*x^4 + 3*x^5 - 11*x^6 + 12*x^7 + 2*x^8 + 6*x^9 - 2*x^10) / (1 - x^2 - 4*x^3 - 2*x^4 - 2*x^5 + 2*x^6 - x^7 - x^9). - Colin Barker, Mar 06 2018

A208495 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

2, 16, 60, 324, 1794, 12654, 111328, 1037300, 13597800, 200667632, 3402101520, 81763293780, 1957289927740, 66305181080964, 2590637896086730, 114679284980561840, 7286860676676341916, 454949245195033857996
Offset: 1

Views

Author

R. H. Hardin Feb 27 2012

Keywords

Comments

Diagonal of A208501

Examples

			Some solutions for n=4
..1..0..1..1....0..1..1..1....1..1..0..1....1..1..1..1....1..0..1..0
..1..0..1..0....1..0..1..0....0..1..1..0....1..0..1..0....1..0..1..1
..0..1..0..0....1..1..0..0....1..0..1..1....0..1..0..0....0..1..0..1
..0..1..1..0....0..1..0..1....1..1..0..1....0..1..1..0....0..1..0..0
		

A208497 Number of nX4 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

10, 100, 144, 324, 650, 1406, 3024, 6150, 13560, 28688, 59598, 128520, 274230, 576520, 1218560, 2621232, 5546520, 11635076, 24984990, 53176014, 111623072, 237955858, 508611568, 1072136960, 2270141058, 4856035380, 10288291950
Offset: 1

Views

Author

R. H. Hardin Feb 27 2012

Keywords

Comments

Column 4 of A208501

Examples

			Some solutions for n=4
..0..1..1..1....0..1..0..0....1..1..1..0....1..0..1..1....1..0..1..0
..1..0..1..0....0..1..1..1....0..1..0..1....1..0..1..1....1..0..1..1
..1..1..0..0....1..0..1..1....1..0..1..1....0..1..0..0....0..1..0..1
..0..1..0..1....1..1..0..0....1..1..1..0....1..1..1..1....0..1..0..0
		

Formula

Empirical: a(n) = 12*a(n-3) +5*a(n-4) -57*a(n-6) -2*a(n-8) +139*a(n-9) -21*a(n-10) -8*a(n-11) -194*a(n-12) +61*a(n-13) -13*a(n-14) +178*a(n-15) -90*a(n-16) +18*a(n-17) -99*a(n-18) +48*a(n-19) +3*a(n-20) +40*a(n-21) -2*a(n-22) +a(n-23) -9*a(n-24) -2*a(n-25) +a(n-27) for n>29

A208498 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

16, 256, 324, 828, 1794, 4104, 9912, 21976, 52560, 121264, 279930, 662256, 1518514, 3571988, 8299060, 19262480, 45164520, 104532130, 244409310, 568980936, 1322673264, 3089796934, 7178968320, 16741713920, 38997040062, 90747250860
Offset: 1

Views

Author

R. H. Hardin Feb 27 2012

Keywords

Comments

Column 5 of A208501

Examples

			Some solutions for n=4
..1..0..1..1..0....1..0..1..0..0....0..1..1..1..1....1..1..1..0..1
..0..1..0..1..0....0..1..1..0..1....0..1..0..1..1....0..1..0..1..0
..0..1..1..0..0....0..1..0..1..1....1..0..1..0..0....1..0..1..1..0
..1..0..1..1..0....1..0..1..1..0....1..0..1..0..1....1..0..1..0..0
		

Formula

Empirical: a(n) = a(n-2) +16*a(n-3) +2*a(n-4) +2*a(n-5) -107*a(n-6) +10*a(n-7) -75*a(n-8) +416*a(n-9) -102*a(n-10) +335*a(n-11) -965*a(n-12) +313*a(n-13) -613*a(n-14) +1499*a(n-15) -398*a(n-16) +552*a(n-17) -1629*a(n-18) +183*a(n-19) -217*a(n-20) +1234*a(n-21) +93*a(n-22) -46*a(n-23) -623*a(n-24) -161*a(n-25) +86*a(n-26) +235*a(n-27) +71*a(n-28) -35*a(n-29) -72*a(n-30) -8*a(n-31) +6*a(n-32) +13*a(n-33) -a(n-34) -a(n-36) for n>38

A208499 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

26, 676, 756, 2124, 4992, 12654, 33488, 79376, 214560, 539792, 1340052, 3550932, 8928264, 22884596, 58320710, 150426976, 386485092, 969138898, 2534260860, 6476490918, 16314573968, 42371558268, 108544182448, 275738199040
Offset: 1

Views

Author

R. H. Hardin Feb 27 2012

Keywords

Comments

Column 6 of A208501

Examples

			Some solutions for n=4
..0..1..0..1..1..0....0..1..0..1..1..1....0..1..0..1..0..0....0..1..0..1..0..1
..1..0..1..1..0..1....1..0..1..0..1..1....0..1..1..0..1..1....0..1..0..1..0..0
..1..0..1..0..1..1....1..0..1..1..0..0....1..0..1..0..1..1....1..0..1..0..1..1
..0..1..0..1..1..0....0..1..0..1..0..0....1..1..0..1..0..0....1..0..1..1..1..1
		

Formula

Empirical: a(n) = 40*a(n-3) +5*a(n-4) -750*a(n-6) +25*a(n-7) -2*a(n-8) +8770*a(n-9) -1800*a(n-10) +27*a(n-11) -71804*a(n-12) +20884*a(n-13) -270*a(n-14) +438312*a(n-15) -125610*a(n-16) +8772*a(n-17) -2075450*a(n-18) +475416*a(n-19) -81530*a(n-20) +7828412*a(n-21) -1239230*a(n-22) +329284*a(n-23) -24008186*a(n-24) +2366628*a(n-25) -465682*a(n-26) +60821718*a(n-27) -3325577*a(n-28) -1056230*a(n-29) -128920264*a(n-30) +2204526*a(n-31) +5591281*a(n-32) +230814746*a(n-33) +6933222*a(n-34) -8857319*a(n-35) -351485754*a(n-36) -35427722*a(n-37) +162691*a(n-38) +458413281*a(n-39) +92430042*a(n-40) +25081772*a(n-41) -516087411*a(n-42) -168948739*a(n-43) -53720714*a(n-44) +505174901*a(n-45) +232633694*a(n-46) +64974873*a(n-47) -432082685*a(n-48) -248321033*a(n-49) -52394241*a(n-50) +323201610*a(n-51) +207584446*a(n-52) +28788324*a(n-53) -210800191*a(n-54) -135560985*a(n-55) -10274177*a(n-56) +119512732*a(n-57) +67908102*a(n-58) +2124800*a(n-59) -58912900*a(n-60) -24652122*a(n-61) -384905*a(n-62) +25259057*a(n-63) +5309091*a(n-64) +359998*a(n-65) -9355555*a(n-66) +187051*a(n-67) -293029*a(n-68) +2955797*a(n-69) -675912*a(n-70) +136094*a(n-71) -788429*a(n-72) +294987*a(n-73) -38876*a(n-74) +174689*a(n-75) -73565*a(n-76) +6454*a(n-77) -31100*a(n-78) +11210*a(n-79) -450*a(n-80) +4307*a(n-81) -910*a(n-82) -8*a(n-83) -446*a(n-84) +15*a(n-85) -a(n-86) +30*a(n-87) +2*a(n-88) -a(n-90) for n>92

A208500 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

42, 1764, 1728, 5436, 13806, 37430, 111328, 286754, 844200, 2336928, 6407688, 18684540, 50681028, 145645192, 408090270, 1135228896, 3261392100, 8999952300, 25648313760, 72191962584, 201563085152, 574718422958, 1602200548928
Offset: 1

Views

Author

R. H. Hardin Feb 27 2012

Keywords

Comments

Column 7 of A208501

Examples

			Some solutions for n=4
..0..1..1..1..1..1..1....0..1..1..1..0..1..1....1..0..1..0..1..1..0
..1..0..1..0..1..0..1....0..1..0..1..0..1..0....0..1..1..0..1..0..1
..1..1..0..1..0..1..0....1..0..1..0..1..0..1....0..1..0..1..0..1..1
..0..1..0..1..1..1..1....1..1..1..1..1..1..1....1..0..1..1..1..1..0
		

A208502 Number of 4 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

9, 81, 126, 324, 828, 2124, 5436, 13932, 35676, 91404, 234108, 599724, 1536156, 3935052, 10079676, 25819884, 66138588, 169418124, 433972476, 1111644972, 2847534876, 7294114764, 18684254268, 47860713324, 122597730396, 314040583692
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Comments

Row 4 of A208501.

Examples

			Some solutions for n=4:
..0..1..0..0....1..1..1..0....1..0..1..0....1..0..1..1....1..1..0..0
..0..1..1..0....0..1..0..1....1..1..0..1....1..0..1..1....1..0..1..0
..1..0..1..0....1..0..1..1....0..1..1..1....0..1..0..0....0..1..1..0
..1..1..0..1....1..1..1..0....1..0..1..0....1..1..1..1....0..1..0..1
		

Crossrefs

Cf. A208501.

Formula

Empirical: a(n) = a(n-1) + 4*a(n-2) for n>4.
Conjectures from Colin Barker, Jul 03 2018: (Start)
G.f.: 9*x*(1 + 8*x + x^2 - 14*x^3) / (1 - x - 4*x^2).
a(n) = (9*2^(-6-n)*((1-sqrt(17))^n*(-109+27*sqrt(17)) + (1+sqrt(17))^n*(109+27*sqrt(17)))) / sqrt(17) for n>2.
(End)

A208503 Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

13, 169, 234, 650, 1794, 4992, 13806, 38376, 106236, 295074, 817362, 2269098, 6288048, 17450550, 48371544, 134210700, 372088314, 1032237882, 2862135666, 7939298016, 22015398366, 61064779464, 169339275612, 469681757298
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Comments

Row 5 of A208501.

Examples

			Some solutions for n=4:
..0..1..1..1....1..1..1..1....1..1..0..0....1..0..1..1....0..1..0..0
..0..1..0..1....0..1..0..1....1..0..1..1....0..1..1..1....1..1..0..1
..1..0..1..0....1..0..1..0....0..1..1..1....1..1..0..0....1..0..1..1
..1..0..1..1....1..0..1..0....0..1..0..0....1..0..1..0....0..1..1..0
..0..1..0..1....0..1..0..1....1..0..1..0....0..1..1..1....0..1..0..0
		

Crossrefs

Cf. A208501.

Formula

Empirical: a(n) = a(n-1) + 6*a(n-2) - 3*a(n-3) for n>5.
Empirical g.f.: 13*x*(1 + 12*x - x^2 - 43*x^3 + 19*x^4) / (1 - x - 6*x^2 + 3*x^3). - Colin Barker, Jul 03 2018

A208504 Number of 6 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

19, 361, 456, 1406, 4104, 12654, 37430, 114494, 341012, 1037552, 3103650, 9410776, 28227958, 85405038, 256622854, 775344932, 2332325696, 7040506202, 21193626760, 63940325966, 192562547974, 580744761326, 1749471290612, 5274981085968
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Comments

Row 6 of A208501.

Examples

			Some solutions for n=4:
..1..0..1..0....1..1..0..0....1..1..1..0....1..1..1..1....0..1..0..0
..1..1..0..1....1..0..1..0....1..0..1..0....1..0..1..0....0..1..0..1
..0..1..1..1....0..1..1..1....0..1..0..0....0..1..0..0....1..0..1..1
..1..0..1..0....1..1..0..1....0..1..1..0....0..1..0..0....1..1..1..0
..1..1..0..0....1..0..1..0....1..0..1..1....1..0..1..0....0..1..0..1
..0..1..0..1....0..1..1..0....1..1..0..1....1..1..1..1....1..0..1..1
		

Crossrefs

Cf. A208501.

Formula

Empirical: a(n) = 2*a(n-1) + 7*a(n-2) - 11*a(n-3) - 4*a(n-4) + 4*a(n-5) for n>7.
Empirical g.f.: 19*x*(1 + 17*x - 21*x^2 - 96*x^3 + 113*x^4 + 52*x^5 - 40*x^6) / (1 - 2*x - 7*x^2 + 11*x^3 + 4*x^4 - 4*x^5). - Colin Barker, Jul 03 2018

A208505 Number of 7 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

28, 784, 896, 3024, 9912, 33488, 111328, 374416, 1249472, 4192384, 14013664, 46966976, 157118976, 526293824, 1761299456, 5898133248, 19742507904, 66103688448, 221286062592, 740881883392, 2480260385792, 8303825768448
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Comments

Row 7 of A208501.

Examples

			Some solutions for n=4:
..1..1..1..0....0..1..0..1....0..1..1..0....0..1..1..0....1..0..1..1
..1..0..1..1....0..1..0..0....0..1..0..0....1..0..1..0....1..1..1..1
..0..1..0..1....1..0..1..0....1..0..1..1....1..1..0..1....0..1..0..0
..0..1..1..0....1..1..1..0....1..0..1..1....0..1..0..1....1..0..1..1
..1..0..1..1....0..1..0..0....0..1..0..0....1..0..1..0....1..0..1..1
..1..1..0..1....1..0..1..1....1..1..1..1....1..1..1..0....0..1..0..0
..0..1..0..0....1..1..1..1....1..0..1..1....0..1..0..1....1..1..1..1
		

Crossrefs

Cf. A208501.

Formula

Empirical: a(n) = 2*a(n-1) + 8*a(n-2) - 10*a(n-3) - 8*a(n-4) + 8*a(n-5) for n>7.
Empirical g.f.: 28*x*(1 + 26*x - 32*x^2 - 170*x^3 + 170*x^4 + 160*x^5 - 136*x^6) / (1 - 2*x - 8*x^2 + 10*x^3 + 8*x^4 - 8*x^5). - Colin Barker, Jul 03 2018
Showing 1-10 of 10 results.