A208509 Triangle of coefficients of polynomials v(n,x) jointly generated with A208508; see the Formula section.
1, 3, 5, 1, 7, 5, 9, 14, 1, 11, 30, 7, 13, 55, 27, 1, 15, 91, 77, 9, 17, 140, 182, 44, 1, 19, 204, 378, 156, 11, 21, 285, 714, 450, 65, 1, 23, 385, 1254, 1122, 275, 13, 25, 506, 2079, 2508, 935, 90, 1, 27, 650, 3289, 5148, 2717, 442, 15, 29, 819, 5005, 9867
Offset: 1
Examples
First five rows: 1 3 5 1 7 5 9 14 1 First five polynomials v(n,x): 1 3 5 + x 7 + 5x 9 + 14x + x^2
Crossrefs
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208508 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208509 *)
Formula
u(n,x) = u(n-1,x) + x*v(n-1,x), v(n,x) = u(n-1,x) + v(n-1,x) + 1, with u(1,x)=1, v(1,x)=1.
Conjecture: T(n,k) = binomial(n-1,2*k+1) + binomial(n,2*k+1). - Knud Werner, Jan 11 2022