cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208511 Triangle of coefficients of polynomials u(n,x) jointly generated with A208512; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 7, 4, 1, 7, 14, 16, 8, 1, 9, 23, 37, 36, 16, 1, 11, 34, 69, 94, 80, 32, 1, 13, 47, 114, 195, 232, 176, 64, 1, 15, 62, 174, 354, 528, 560, 384, 128, 1, 17, 79, 251, 588, 1041, 1384, 1328, 832, 256, 1, 19, 98, 347, 916, 1863, 2938, 3536
Offset: 1

Views

Author

Clark Kimberling, Feb 28 2012

Keywords

Examples

			First five rows:
1
1...1
1...3...2
1...5...7....4
1...7...14...16...8
First five polynomials u(n,x):
1
1 + x
1 + 3x + 2x^2
1 + 5x + 7x^2 + 4x^3
1 + 7x + 14x^2 + 16x^3 + 8x^4
		

Crossrefs

Cf. A208511.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208511 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208512 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.