This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208514 #8 Dec 20 2021 06:50:23 %S A208514 1,1,1,1,2,2,1,3,4,3,1,4,6,7,5,1,5,8,12,13,8,1,6,10,18,24,23,13,1,7, %T A208514 12,25,38,46,41,21,1,8,14,33,55,78,88,72,34,1,9,16,42,75,120,158,165, %U A208514 126,55,1,10,18,52,98,173,255,313,307,219,89,1,11,20,63,124,238 %N A208514 Triangle of coefficients of polynomials u(n,x) jointly generated with A208515; see the Formula section. %C A208514 u(n,n) = Fibonacci(n), A000045 %C A208514 u(n+1,n) = A208354(n) %C A208514 col 1: A000012 %C A208514 col 2: A000027 %C A208514 col 3: A005843 %C A208514 col 4: A055998 %C A208514 col 5: A140090 %F A208514 u(n,x)=u(n-1,x)+x*v(n-1,x), %F A208514 v(n,x)=x*u(n-1,x)+x*v(n-1,x)+1, %F A208514 where u(1,x)=1, v(1,x)=1. %e A208514 First five rows: %e A208514 1 %e A208514 1...1 %e A208514 1...2...2 %e A208514 1...3...4...3 %e A208514 1...4...6...7...5 %e A208514 First five polynomials u(n,x): %e A208514 1 %e A208514 1 + x %e A208514 1 + 2x + 2x^2 %e A208514 1 + 3x + 4x^2 + 3x^3 %e A208514 1 + 4x + 6x^2 + 7x^3 + 5x^4 %t A208514 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208514 u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; %t A208514 v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; %t A208514 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208514 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208514 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208514 TableForm[cu] %t A208514 Flatten[%] (* A208514 *) %t A208514 Table[Expand[v[n, x]], {n, 1, z}] %t A208514 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208514 TableForm[cv] %t A208514 Flatten[%] (* A208515 *) %Y A208514 Cf. A208515. %K A208514 nonn,tabl %O A208514 1,5 %A A208514 _Clark Kimberling_, Feb 28 2012