This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208516 #5 Mar 30 2012 18:58:13 %S A208516 1,1,1,1,2,3,1,3,6,7,1,4,9,15,17,1,5,12,24,39,41,1,6,15,34,66,100,99, %T A208516 1,7,18,45,98,178,256,239,1,8,21,57,135,276,478,653,577,1,9,24,70,177, %U A208516 395,772,1275,1661,1393,1,10,27,84,224,536,1145,2139,3383,4214 %N A208516 Triangle of coefficients of polynomials u(n,x) jointly generated with A208517; see the Formula section. %F A208516 u(n,x)=u(n-1,x)+x*v(n-1,x), %F A208516 v(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1, %F A208516 where u(1,x)=1, v(1,x)=1. %e A208516 First five rows: %e A208516 1 %e A208516 1...1 %e A208516 1...2...3 %e A208516 1...3...6...7 %e A208516 1...4...9...15...17 %e A208516 First five polynomials u(n,x): %e A208516 1 %e A208516 1 + x %e A208516 1 + 2x + 3x^2 %e A208516 1 + 3x + 6x^2 + 7x^3 %e A208516 1 + 4x + 9x^2 + 15x^3 + 17x^4 %t A208516 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208516 u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; %t A208516 v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1; %t A208516 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208516 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208516 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208516 TableForm[cu] %t A208516 Flatten[%] (* A208516 *) %t A208516 Table[Expand[v[n, x]], {n, 1, z}] %t A208516 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208516 TableForm[cv] %t A208516 Flatten[%] (* A208517 *) %Y A208516 Cf. A208517. %K A208516 nonn,tabl %O A208516 1,5 %A A208516 _Clark Kimberling_, Feb 28 2012