cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208518 Triangle of coefficients of polynomials u(n,x) jointly generated with A208519; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 7, 3, 1, 10, 16, 14, 5, 1, 15, 30, 40, 28, 8, 1, 21, 50, 90, 93, 53, 13, 1, 28, 77, 175, 238, 203, 99, 21, 1, 36, 112, 308, 518, 588, 428, 181, 34, 1, 45, 156, 504, 1008, 1428, 1380, 873, 327, 55, 1, 55, 210, 780, 1806, 3066, 3690, 3105
Offset: 1

Views

Author

Clark Kimberling, Feb 28 2012

Keywords

Comments

coefficient of x^(n-1): = Fibonacci(n) = A000045(n)
col 1: A000012
col 2: A000217 (triangular numbers)
col 3: A005581
col 4: A117662
alternating row sums: signed version of (-1+Fibonacci(n))

Examples

			First five rows:
1
1...1
1...3....2
1...6....7....3
1...10...16...14...5
First five polynomials u(n,x):
1
1 + x
1 + 3x + 2x^2
1 + 6x + 7x^2 + 3x^3
1 + 10x + 16x^2 + 14x^3 + 5x^4
		

Crossrefs

Cf. A208519.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A208518 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A208519 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.