This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208519 #9 Mar 30 2012 18:58:13 %S A208519 1,2,2,3,5,3,4,9,11,5,5,14,26,23,8,6,20,50,65,45,13,7,27,85,145,150, %T A208519 86,21,8,35,133,280,385,329,160,34,9,44,196,490,840,952,692,293,55,10, %U A208519 54,276,798,1638,2310,2232,1413,529,89,11,65,375,1230,2940,4956 %N A208519 Triangle of coefficients of polynomials v(n,x) jointly generated with A208518; see the Formula section. %C A208519 coefficient of x^(n-1): Fibonacci(n+1) = A000045(n+1) %C A208519 col 1: A000027 %C A208519 col 2: A000096 %C A208519 col 3: A051925 %C A208519 row sums: A002878 (bisection of Lucas sequence) %C A208519 alternating row sums: A000045(n-2), Fibonacci numbers %F A208519 u(n,x)=u(n-1,x)+x*v(n-1,x), %F A208519 v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1, %F A208519 where u(1,x)=1, v(1,x)=1. %e A208519 First five rows: %e A208519 1 %e A208519 2...2 %e A208519 3...5....3 %e A208519 4...9....11...5 %e A208519 5...14...26...23...8 %e A208519 First five polynomials v(n,x): %e A208519 1 %e A208519 2 + 2x %e A208519 3 + 5x + 3x^2 %e A208519 4 + 9x + 11x^2 + 5x^3 %e A208519 5 + 14x + 26x^2 + 23x^3 + 8x^4 %t A208519 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208519 u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; %t A208519 v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; %t A208519 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208519 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208519 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208519 TableForm[cu] %t A208519 Flatten[%] (* A208518 *) %t A208519 Table[Expand[v[n, x]], {n, 1, z}] %t A208519 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208519 TableForm[cv] %t A208519 Flatten[%] (* A208519 *) %Y A208519 Cf. A208518. %K A208519 nonn,tabl %O A208519 1,2 %A A208519 _Clark Kimberling_, Feb 28 2012