cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208533 Number of n-bead necklaces of n colors not allowing reversal, with no adjacent beads having the same color.

This page as a plain text file.
%I A208533 #21 Nov 01 2017 12:23:56
%S A208533 1,1,2,24,204,2635,39990,720916,14913192,348684381,9090909090,
%T A208533 261535848376,8230246567620,281241174889207,10371206370593250,
%U A208533 410525522392242720,17361641481138401520,781282469565908953017,37275544492386193492506,1879498672877604463254424
%N A208533 Number of n-bead necklaces of n colors not allowing reversal, with no adjacent beads having the same color.
%H A208533 Andrew Howroyd, <a href="/A208533/b208533.txt">Table of n, a(n) for n = 1..80</a>
%F A208533 a(n) = (1/n) * Sum_{d | n} totient(n/d) * ((n-1)*(-1)^d + (n-1)^d) for n > 1. - _Andrew Howroyd_, Mar 12 2017
%e A208533 All solutions for n=4:
%e A208533 ..2....1....1....1....1....1....2....1....1....3....1....1....1....2....1....1
%e A208533 ..3....2....4....4....4....3....4....4....3....4....3....4....2....3....2....2
%e A208533 ..2....4....2....3....2....2....3....1....1....3....4....3....1....4....3....1
%e A208533 ..4....2....4....2....3....3....4....4....3....4....2....4....4....3....2....2
%e A208533 ..
%e A208533 ..1....1....2....1....2....1....1....1
%e A208533 ..2....3....3....3....4....2....2....3
%e A208533 ..1....4....2....1....2....4....3....2
%e A208533 ..3....3....3....4....4....3....4....4
%t A208533 a[1] = 1; a[n_] = (1/n)*DivisorSum[n, EulerPhi[n/#]*((n-1)*(-1)^# + (n-1)^#)& ]; Array[a, 20] (* _Jean-François Alcover_, Nov 01 2017, after _Andrew Howroyd_ *)
%o A208533 (PARI) a(n) = if (n==1, 1, (1/n) * sumdiv(n, d, eulerphi(n/d) * ((n-1)*(-1)^d + (n-1)^d))); \\ _Michel Marcus_, Nov 01 2017
%Y A208533 Diagonal of A208535.
%K A208533 nonn
%O A208533 1,3
%A A208533 _R. H. Hardin_, Feb 27 2012
%E A208533 a(14)-a(20) from _Andrew Howroyd_, Mar 12 2017