cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208545 Number of 7-bead necklaces of n colors allowing reversal, with no adjacent beads having the same color.

Original entry on oeis.org

0, 0, 9, 156, 1170, 5580, 19995, 58824, 149796, 341640, 714285, 1391940, 2559414, 4482036, 7529535, 12204240, 19173960, 29309904, 43730001, 63847980, 91428570, 128649180, 178168419, 243201816, 327605100, 435965400, 573700725, 747168084
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Comments

Row 7 of A208544.

Examples

			All solutions for n=3
..1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2
..3....3....1....1....3....1....3....1....3
..1....1....2....2....1....2....2....3....2
..2....3....3....3....3....1....3....1....3
..3....1....1....2....2....2....2....2....1
..2....3....3....3....3....3....3....3....3
		

Crossrefs

Cf. A208537.

Programs

  • PARI
    Vec(3*x^3*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4) / (1 - x)^8 + O(x^40)) \\ Colin Barker, Nov 11 2017

Formula

Empirical: a(n) = (1/14)*n^7 - (1/2)*n^6 + (3/2)*n^5 - (5/2)*n^4 + (5/2)*n^3 - (3/2)*n^2 + (3/7)*n.
From Colin Barker, Nov 11 2017: (Start)
G.f.: 3*x^3*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)