A208545 Number of 7-bead necklaces of n colors allowing reversal, with no adjacent beads having the same color.
0, 0, 9, 156, 1170, 5580, 19995, 58824, 149796, 341640, 714285, 1391940, 2559414, 4482036, 7529535, 12204240, 19173960, 29309904, 43730001, 63847980, 91428570, 128649180, 178168419, 243201816, 327605100, 435965400, 573700725, 747168084
Offset: 1
Examples
All solutions for n=3 ..1....1....1....1....1....1....1....1....1 ..2....2....2....2....2....2....2....2....2 ..3....3....1....1....3....1....3....1....3 ..1....1....2....2....1....2....2....3....2 ..2....3....3....3....3....1....3....1....3 ..3....1....1....2....2....2....2....2....1 ..2....3....3....3....3....3....3....3....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Cf. A208537.
Programs
-
PARI
Vec(3*x^3*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4) / (1 - x)^8 + O(x^40)) \\ Colin Barker, Nov 11 2017
Formula
Empirical: a(n) = (1/14)*n^7 - (1/2)*n^6 + (3/2)*n^5 - (5/2)*n^4 + (5/2)*n^3 - (3/2)*n^2 + (3/7)*n.
From Colin Barker, Nov 11 2017: (Start)
G.f.: 3*x^3*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
Comments