A208547 Phi(k,m) with squarefree k values in sorted order for any integer m > 1.
1, 2, 6, 3, 10, 5, 14, 7, 15, 30, 22, 11, 21, 26, 42, 13, 34, 17, 38, 19, 33, 66, 46, 23, 35, 39, 78, 70, 58, 29, 62, 31, 51, 102, 57, 74, 114, 37, 55, 82, 110, 41, 86, 43, 69, 138, 94, 47, 65, 210, 130, 105, 106, 53, 87, 174, 118, 59, 77, 93, 122, 186, 154
Offset: 1
Examples
For those squarefree numbers that make A000010(k) = 1 Phi(1,m) = -1 + m Phi(2,m) = 1 + m Phi(1,m) < Phi(2,m) So, a(1)=1, a(2)=2; For those squarefree numbers that make A000010(k) = 2 Phi(3,m) = 1 + m + m^2 Phi(6,m) = 1 - m + m^2 Obviously when integer m > 1, Phi(6,m) < Phi(3,m) So a(3)=6, a(4)=3 (noting that Phi(6,m) > Phi(2,m) when m > 2, and Phi(6,2) = Phi(2,2)) For those squarefree numbers that make A000010(k) = 4 Phi(5,m) = 1 + m + m^2 + m^3 + m^4 Phi(10,m) = 1 - m + m^2 - m^3 + m^4 Obviously when integer m > 1, Phi(10,m) < Phi(5,m), So a(5) = 10, and a(6) = 5 (noting Phi(10,m) - Phi(3,m) = m((m^2 + m + 2)(m - 2) + 2) >= 4 > 0 when m >= 2).
Programs
-
Mathematica
phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; eb = 60; t = Select[Range[Max[Table[phiinv[n], {n, 1, eb}]]], ((EulerPhi[#] <= eb) && SquareFreeQ[#]) &]; SortBy[t, Cyclotomic[#, 2]&]
Comments