cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208552 Number of n X 5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.

This page as a plain text file.
%I A208552 #8 Jul 04 2018 08:49:46
%S A208552 16,256,1008,3969,10080,25600,52000,105625,187200,331776,536256,
%T A208552 866761,1310848,1982464,2851200,4100625,5670000,7840000,10502800,
%U A208552 14070001,18364896,23970816,30614688,39100009,49023520,61465600,75852000,93605625
%N A208552 Number of n X 5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.
%C A208552 Column 5 of A208555.
%H A208552 R. H. Hardin, <a href="/A208552/b208552.txt">Table of n, a(n) for n = 1..210</a>
%F A208552 Empirical: a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12).
%F A208552 Empirical g.f.: x*(16 + 224*x + 432*x^2 + 1089*x^3 + 750*x^4 + 604*x^5 + 90*x^6 + 30*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5). - _Colin Barker_, Jul 04 2018
%e A208552 Some solutions for n=4:
%e A208552 ..0..1..0..1..0....1..0..1..1..1....0..1..1..1..0....0..1..1..0..1
%e A208552 ..0..1..1..0..0....0..1..0..1..0....1..1..1..1..0....1..0..1..1..1
%e A208552 ..0..1..0..1..0....1..0..1..1..0....0..1..1..1..0....0..1..1..0..0
%e A208552 ..0..1..1..0..0....0..1..0..1..0....1..1..0..1..0....1..0..1..1..0
%Y A208552 Cf. A208555.
%K A208552 nonn
%O A208552 1,1
%A A208552 _R. H. Hardin_, Feb 28 2012