cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208599 Number of 5-bead necklaces labeled with numbers -n..n not allowing reversal, with sum zero.

This page as a plain text file.
%I A208599 #12 Mar 18 2018 15:43:39
%S A208599 11,77,291,791,1761,3431,6077,10021,15631,23321,33551,46827,63701,
%T A208599 84771,110681,142121,179827,224581,277211,338591,409641,491327,584661,
%U A208599 690701,810551,945361,1096327,1264691,1451741,1658811,1887281,2138577,2414171
%N A208599 Number of 5-bead necklaces labeled with numbers -n..n not allowing reversal, with sum zero.
%C A208599 Row 5 of A208597.
%H A208599 R. H. Hardin, <a href="/A208599/b208599.txt">Table of n, a(n) for n = 1..210</a>
%F A208599 Empirical: a(n) = (23/12)*n^4 + (23/6)*n^3 + (37/12)*n^2 + (7/6)*n + 1.
%F A208599 Conjectures from _Colin Barker_, Mar 07 2018: (Start)
%F A208599 G.f.: x*(11 + 22*x + 16*x^2 - 4*x^3 + x^4) / (1 - x)^5.
%F A208599 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
%F A208599 (End)
%e A208599 Some solutions for n=4:
%e A208599   -4  -3  -4  -4  -3  -3  -3  -3  -3  -4  -4  -4  -4  -4  -4  -1
%e A208599   -1   2   3   2   0   2   1  -1   4   2   0  -1   4   0   0   0
%e A208599    4  -2   2  -4  -3   2   2   2   0   0   0   4  -3   2  -1   1
%e A208599   -2   3   0   3   3  -1  -2   0   1  -2   2   1   4   1   2  -1
%e A208599    3   0  -1   3   3   0   2   2  -2   4   2   0  -1   1   3   1
%Y A208599 Cf. A208597.
%K A208599 nonn
%O A208599 1,1
%A A208599 _R. H. Hardin_, Feb 29 2012