A208600 Number of 6-bead necklaces labeled with numbers -n..n not allowing reversal, with sum zero.
26, 297, 1564, 5457, 14838, 34153, 69784, 130401, 227314, 374825, 590580, 895921, 1316238, 1881321, 2625712, 3589057, 4816458, 6358825, 8273228, 10623249, 13479334, 16919145, 21027912, 25898785, 31633186, 38341161, 46141732, 55163249
Offset: 1
Keywords
Examples
Some solutions for n=4: -4 -4 -4 -3 -4 -2 -4 -4 -4 -4 -3 -4 -4 -3 -3 -1 4 3 2 2 -3 -2 -1 2 0 -1 3 4 2 -1 3 0 0 2 -1 3 -2 2 0 -3 4 2 -3 -2 1 2 0 -1 1 1 -3 0 3 0 -1 0 -1 1 3 0 3 -2 -2 0 -1 1 3 0 4 -2 4 3 4 4 -3 1 -2 4 0 -1 0 -3 3 -2 2 4 2 2 -3 -2 3 1 0 0 2 3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (44/15)*n^5 + (22/3)*n^4 + (23/3)*n^3 + (14/3)*n^2 + (12/5)*n + 1.
Conjectures from Colin Barker, Mar 07 2018: (Start)
G.f.: x*(26 + 141*x + 172*x^2 + 8*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
Comments