A208607 Triangle of coefficients of polynomials v(n,x) jointly generated with A208606; see the Formula section.
1, 3, 1, 5, 3, 1, 7, 8, 6, 1, 9, 18, 19, 6, 1, 11, 35, 47, 25, 9, 1, 13, 61, 102, 81, 42, 9, 1, 15, 98, 203, 219, 147, 51, 12, 1, 17, 148, 378, 520, 435, 216, 74, 12, 1, 19, 213, 666, 1122, 1145, 747, 334, 86, 15, 1, 21, 295, 1119, 2250, 2753, 2233, 1245, 450
Offset: 1
Examples
First five rows: 1 3...1 5...3...1 7...8...6...1 9...18...19...6...1 First five polynomials v(n,x): 1 3 + x 5 + 3x + x^2 7 + 8x + 6x^2 + x^3 9 + 18x + 19x^2 + 6x^3 + x^4
Crossrefs
Cf. A208606.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208606 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208607 *)
Formula
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments