This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208608 #9 Mar 30 2012 18:58:13 %S A208608 1,1,1,1,3,2,1,5,6,3,1,7,12,12,5,1,9,20,29,23,8,1,11,30,56,64,43,13,1, %T A208608 13,42,95,140,136,79,21,1,15,56,148,265,332,279,143,34,1,17,72,217, %U A208608 455,692,751,558,256,55,1,19,90,304,728,1295,1708,1641,1093,454 %N A208608 Triangle of coefficients of polynomials u(n,x) jointly generated with A208609; see the Formula section. %C A208608 coefficient of x^(n-1)=Fibonacci(n)=A000045(n) %F A208608 u(n,x)=u(n-1,x)+x*v(n-1,x), %F A208608 v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1, %F A208608 where u(1,x)=1, v(1,x)=1. %e A208608 First five rows: %e A208608 1 %e A208608 1...1 %e A208608 1...3...2 %e A208608 1...5...6....3 %e A208608 1...7...12...12...5 %e A208608 First five polynomials u(n,x): %e A208608 1 %e A208608 1 + x %e A208608 1 + 3x + 2x^2 %e A208608 1 + 5x + 6x^2 + 3x^3 %e A208608 1 + 7x + 12x^2 + 12x^3 + 5x^4 %t A208608 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208608 u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; %t A208608 v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; %t A208608 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208608 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208608 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208608 TableForm[cu] %t A208608 Flatten[%] (* A208608 *) %t A208608 Table[Expand[v[n, x]], {n, 1, z}] %t A208608 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208608 TableForm[cv] %t A208608 Flatten[%] (* A208609 *) %Y A208608 Cf. A208609. %K A208608 nonn,tabl %O A208608 1,5 %A A208608 _Clark Kimberling_, Feb 29 2012