This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208609 #8 Mar 30 2012 18:58:13 %S A208609 1,2,2,2,4,3,2,6,9,5,2,8,17,18,8,2,10,27,41,35,13,2,12,39,76,93,66,21, %T A208609 2,14,53,125,196,200,122,34,2,16,69,190,360,472,415,222,55,2,18,87, %U A208609 273,603,957,1083,837,399,89,2,20,107,376,945,1750,2400,2392 %N A208609 Triangle of coefficients of polynomials v(n,x) jointly generated with A208608; see the Formula section. %C A208609 v(n,n)=Fibonacci(n+1)=A000045(n+1). %F A208609 u(n,x)=u(n-1,x)+x*v(n-1,x), %F A208609 v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1, %F A208609 where u(1,x)=1, v(1,x)=1. %e A208609 First five rows: %e A208609 1 %e A208609 2...2 %e A208609 2...4...3 %e A208609 2...6...9....5 %e A208609 2...8...17...18...8 %e A208609 First five polynomials v(n,x): %e A208609 1 %e A208609 2 + 2x %e A208609 2 + 4x + 3x^2 %e A208609 2 + 6x + 9x^2 + 5x^3 %e A208609 2 + 8x + 17x^2 + 18x^3 + 8x^4 %t A208609 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208609 u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; %t A208609 v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; %t A208609 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208609 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208609 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208609 TableForm[cu] %t A208609 Flatten[%] (* A208608 *) %t A208609 Table[Expand[v[n, x]], {n, 1, z}] %t A208609 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208609 TableForm[cv] %t A208609 Flatten[%] (* A208609 *) %Y A208609 Cf. A208608. %K A208609 nonn,tabl %O A208609 1,2 %A A208609 _Clark Kimberling_, Feb 29 2012