A208613 Triangle of coefficients of polynomials v(n,x) jointly generated with A208612; see the Formula section.
1, 3, 2, 5, 7, 3, 7, 17, 16, 5, 9, 34, 51, 33, 8, 11, 60, 127, 129, 65, 13, 13, 97, 272, 386, 302, 124, 21, 15, 147, 525, 975, 1052, 666, 231, 34, 17, 212, 938, 2186, 3049, 2646, 1409, 423, 55, 19, 294, 1578, 4482, 7757, 8650, 6285, 2887, 764, 89, 21
Offset: 1
Examples
First five rows: 1 3...2 5...7....3 7...17...16...3 9...34...51...33...8 First five polynomials v(n,x): 1 3 + 2x 5 + 7x + 3x^2 7 + 17x + 16x^2 + 3x^3 9 + 34x + 51x^2 + 33x^3 + 8x^4
Crossrefs
Cf. A208612.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208612 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208613 *)
Formula
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments