This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208614 #31 May 23 2024 15:07:28 %S A208614 1,0,1,1,0,1,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,3,1,4,2,1,1,1,3,2, %T A208614 1,1,3,1,1,2,3,1,2,1,3,4,2,1,5,9,6,5,4,1,6,6,7,4,3,1,4,1,4,9,20,7,3,1, %U A208614 7,8,6,1,15,1,5,19,11,13,9,1,21,52,7,1 %N A208614 Number of partitions of n into distinct primes where all of the prime factors of n are represented in the partition. %C A208614 Inspired by web-based discussion started by Rajesh Bhowmick. %H A208614 Alois P. Heinz, <a href="/A208614/b208614.txt">Table of n, a(n) for n = 0..5000</a> %H A208614 Rajesh Bhowmick, <a href="http://sciforums.com/showthread.php?t=112659">A bit different from Goldbach's conjecture</a> (February 27-28, 2012) %e A208614 a(p) = 1 for any prime p. %e A208614 a(n) = 0 for 1, 4, 6, 8, 9, 22. %e A208614 a(25) = 3 because 25 = 3 + 5 + 17 = 5 + 7 + 13 = 2 + 5 + 7 + 11. %p A208614 with(numtheory): %p A208614 a:= proc(n) local b, l, f; %p A208614 b:= proc(h, j) option remember; %p A208614 `if`(h=0, 1, `if`(j<1, 0, %p A208614 `if`(l[j]>h, 0, b(h-l[j], j-1)) +b(h, j-1))) %p A208614 end; forget(b); %p A208614 f:= factorset(n); %p A208614 l:= sort([({seq(ithprime(i), i=1..pi(n))} minus f)[]]); %p A208614 b(n-add(i, i=f), nops(l)) %p A208614 end: %p A208614 seq(a(n), n=0..300); # _Alois P. Heinz_, Mar 20 2012 %t A208614 restrictedIntegerPartition[ n_Integer, list_List ] := 1 /; n == 0 %t A208614 restrictedIntegerPartition[ n_Integer, list_List ] := 0 /; n < 0 || Total[list] < n || n < Min[list] %t A208614 restrictedIntegerPartition[ n_Integer, list_List ] := restrictedIntegerPartition[n - First[list], Rest[list]] + restrictedIntegerPartition[n, Rest[list]] %t A208614 distinctPrimeFactors[ n_Integer ] := distinctPrimeFactors[n] = Map[First, FactorInteger[n]] %t A208614 oeisA076694[ n_Integer ] := oeisA076694[n] = n - Total[distinctPrimeFactors[n]] %t A208614 oeisA208614[ n_Integer ] := restrictedIntegerPartition[oeisA076694[n], Sort[Complement[Prime @ Range @ PrimePi @ oeisA076694 @ n, distinctPrimeFactors[n]] , Greater ]] %t A208614 Table[oeisA208614[n], {n,1,100}] %o A208614 (Maxima) %o A208614 countRestrictedIntegerPartitions(n, L) := if ( n = 0 ) then 1 else if ( ( n < 0 ) or ( lsum(k, k, L) < n ) or ( n < lmin( L ) ) ) then 0 else block( [ m, R ], m : first(L), R : rest(L), countRestrictedIntegerPartitions(n, R) + countRestrictedIntegerPartitions(n - m, R)); %o A208614 distinctPrimeFactors(n) := map(first,ifactors(n)); %o A208614 oeisA076694(n) := n - lsum(k,k,distinctPrimeFactors(n)); %o A208614 listOfPrimesLessThanOrEqualTo (n) := block( [ list : [] , i], for i : 2 step 0 while i <= n do ( list : cons(i, list) , i : next_prime(i) ) , list ); %o A208614 oeisA208614(n) := block([ m, list ], m : oeisA076694(n), list : sort(listify(setdifference(setify(listOfPrimesLessThanOrEqualTo(m)), setify(distinctPrimeFactors(n)))), ordergreatp), countRestrictedIntegerPartitions(m, list)); %o A208614 makelist(oeisA208614(j), j, 1, 100); %Y A208614 Cf. A000586 (upper bound). A000586(A076694(n)) is a stricter upper bound. %K A208614 nonn %O A208614 0,26 %A A208614 _Richard Penner_, Feb 29 2012