cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208615 Number of Young tableaux A(n,k) with n k-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing); square array A(n,k), n>=0, k>=0, read by antidiagonals.

This page as a plain text file.
%I A208615 #34 Jan 28 2019 17:13:35
%S A208615 1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,6,10,1,1,1,1,15,53,35,1,1,1,1,43,
%T A208615 491,587,126,1,1,1,1,133,6091,25187,7572,462,1,1,1,1,430,87781,
%U A208615 1676707,1725819,109027,1716,1,1,1,1,1431,1386529,140422657,705002611,144558247,1705249,6435,1,1
%N A208615 Number of Young tableaux A(n,k) with n k-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing); square array A(n,k), n>=0, k>=0, read by antidiagonals.
%C A208615 A(n,k) is also the number of (n*k-1)-step walks on k-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_k) we have p_1<=p_2<=...<=p_k or p_1>=p_2>=...>=p_k.
%H A208615 Alois P. Heinz, <a href="/A208615/b208615.txt">Antidiagonals n = 0..25, flattened</a>
%e A208615 A(2,3) = 6:
%e A208615   +---+      +---+      +---+      +---+      +---+      +---+
%e A208615   |123|      |123|      |124|      |125|      |134|      |135|
%e A208615   |456|      |654|      |356|      |346|      |256|      |246|
%e A208615   +---+---+  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+
%e A208615   |x  |100|  |x  |100|  |x  |100|  |x  |100|  |x  |100|  |x  |100|
%e A208615   | x |110|  | x |110|  | x |110|  | x |110|  |x  |200|  |x  |200|
%e A208615   |  x|111|  |  x|111|  |x  |210|  |x  |210|  | x |210|  | x |210|
%e A208615   |x  |211|  |  x|112|  |  x|211|  | x |220|  |  x|211|  | x |220|
%e A208615   | x |221|  | x |122|  | x |221|  |  x|221|  | x |221|  |  x|221|
%e A208615   |  x|222|  |x  |222|  |  x|222|  |  x|222|  |  x|222|  |  x|222|
%e A208615   +---+---+  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+
%e A208615 Square array A(n,k) begins:
%e A208615   1, 1,   1,      1,         1,            1,                1, ...
%e A208615   1, 1,   1,      1,         1,            1,                1, ...
%e A208615   1, 1,   3,      6,        15,           43,              133, ...
%e A208615   1, 1,  10,     53,       491,         6091,            87781, ...
%e A208615   1, 1,  35,    587,     25187,      1676707,        140422657, ...
%e A208615   1, 1, 126,   7572,   1725819,    705002611,     396803649991, ...
%e A208615   1, 1, 462, 109027, 144558247, 398084427253, 1672481205752413, ...
%p A208615 b:= proc() option remember;
%p A208615       `if`(nargs<2, 1, `if`(args[1]=args[nargs],
%p A208615       `if`(args[1]=0, 1, 2* b(args[1]-1, seq(args[i], i=2..nargs))),
%p A208615       `if`(args[1]>0, b(args[1]-1, seq(args[i], i=2..nargs)), 0)
%p A208615           +add(`if`(args[j]>args[j-1], b(seq(args[i] -`if`(i=j, 1, 0)
%p A208615                 , i=1..nargs)), 0), j=2..nargs) ))
%p A208615     end:
%p A208615 A:= (n, k)-> `if`(n=0 or k=0, 1, b(n-1, n$(k-1))):
%p A208615 seq(seq(A(n, d-n), n=0..d), d=0..12);
%t A208615 b[args__] := b[args] = If[(nargs = Length[{args}]) < 2, 1, If[First[{args}] == Last[{args}], If[First[{args}] == 0, 1, 2*b[First[{args}]-1, Sequence @@ Rest[{args}]]], If[First[{args}] > 0, b[First[{args}]-1, Sequence @@ Rest[{args}]], 0] + Sum [If[{args}[[j]] > {args}[[j-1]], b[Sequence @@ Table[{args}[[i]] - If[i == j, 1, 0], {i, 1, nargs}]], 0], {j, 2, nargs}] ] ]; a[n_, k_] := If[n == 0 || k == 0, 1, b[n-1, Sequence @@ Array[n&, k-1]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Dec 12 2013, translated from Maple *)
%Y A208615 Rows 0+1, 2-10 give: A000012, A141351 (for n>1), A208616, A208617, A208618, A208619, A208620, A208621, A208622, A208623.
%Y A208615 Columns 0+1, 2-10 give: A000012, A088218, A185148, A208624, A208625, A208626, A208627, A208628, A208629, A208630.
%Y A208615 Main diagonal gives: A208631.
%Y A208615 Antidiagonal sums give: A208729.
%K A208615 nonn,tabl,walk
%O A208615 0,13
%A A208615 _Alois P. Heinz_, Feb 29 2012