A208639 Number of 4 X n 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.
8, 34, 95, 225, 494, 1042, 2149, 4375, 8840, 17784, 35687, 71509, 143170, 286510, 573209, 1146627, 2293484, 4587220, 9174715, 18349729, 36699782, 73399914, 146800205, 293600815, 587202064, 1174404592, 2348809679, 4697619885
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0..1....0..1..0..1....0..0..0..1....0..1..1..1....0..0..1..0 ..1..0..1..0....0..1..0..0....1..1..0..0....1..0..0..0....1..0..1..1 ..0..1..0..1....0..1..1..1....0..1..1..1....0..1..1..1....0..1..0..1 ..0..1..0..1....1..0..0..1....0..0..0..0....1..0..0..0....0..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A208637.
Formula
Empirical: a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n>5.
Conjectures from Colin Barker, Jul 05 2018: (Start)
G.f.: x*(8 - 6*x - 3*x^2 + 2*x^4) / ((1 - x)^3*(1 - 2*x)).
a(n) = (-42 + 35*2^n - 13*n - n^2) / 2 for n>1.
(End)
Comments