A208643 Least positive integer m such that those k*(k-1) mod m with k=1,...,n are pairwise distinct.
1, 3, 5, 7, 11, 11, 13, 16, 17, 19, 23, 23, 29, 29, 29, 31, 37, 37, 37, 41, 41, 43, 47, 47, 53, 53, 53, 59, 59, 59, 61, 64, 67, 67, 71, 71, 73, 79, 79, 79, 83, 83, 89, 89, 89, 97, 97, 97, 97, 101, 101, 103, 107, 107, 109, 113, 113, 127, 127, 127
Offset: 1
Keywords
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..500
- Zhi-Wei Sun, A function taking only prime values, a message to Number Theory List, Feb. 21, 2012.
- Zhi-Wei Sun, On functions taking only prime values, J. Number Theory 133(2013), no.8, 2794-2812.
Programs
-
Mathematica
R[n_,i_] := Union[Table[Mod[k(k-1),i], {k,1,n}]]; Do[Do[If[Length[R[n,i]]==n, Print[n," ",i]; Goto[aa]], {i,1,4n}]; Print[n]; Label[aa]; Continue, {n,1,1000}]
Comments