This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208655 #5 Mar 30 2012 18:58:13 %S A208655 1,1,6,36,2400,90000,55566000,13553164800,72267023646720, %T A208655 117595223746560000,5219033393851200000000,57636380373471744768000000, %U A208655 20810790197418148654769602560000,1578992018570629416640340512656998400 %N A208655 Number of palindromic paths starting with 1 through the subset array of {1,2,...,n}; see Comments. %C A208655 A palindromic path through the subset array of {1,2,...,n} is essentially a palindrome using numbers i from {1,2,...n}, where the number of times i can be used in position k equals the multiplicity of i in the multiset of numbers in the k-element subsets of {1,2,...,n}. See A208650 for a discussion and guide to related sequences. %e A208655 For n=4, write %e A208655 row 1: 1,2,3,4 %e A208655 row 2: 1,2; 1,3; 1,4; 2,3; 2,4; 3;4 %e A208655 row 3: 1,2,3; 1,2,4; 1,3,4; 2,3,4 %e A208655 row 4: 1,2,3,4 %e A208655 To form a palindromic path of length 4 and starting with 1, there is 1 way to choose 1st term from row 1, then 12 ways to choose 2nd term from row 2, then 3 ways to choose 3rd term, then 1 way to finish. Thus, a(4)=1*12*3*1=36. %t A208655 m[n_] := Floor[(n + 1)/2]; z = 21; %t A208655 g[n_] := Product[i*Binomial[n, i], {i, 1, m[n]}] %t A208655 h[n_] := Product[Binomial[n - 1, i], {i, m[n], n - 1}] %t A208655 Table[g[n], {n, 1, z}] (* A208652 *) %t A208655 Table[h[n], {n, 1, z}] (* A208653 *) %t A208655 Table[g[n] h[n], {n, 1, 2 z/3}] (* A208654 *) %t A208655 Table[g[n] h[n]/n, {n, 1, 2 z/3}] (* A208655 *) %Y A208655 Cf. A208650, A208654. %K A208655 nonn %O A208655 1,3 %A A208655 _Clark Kimberling_, Mar 02 2012