This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208673 #38 Feb 22 2022 11:56:48 %S A208673 1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,5,10,1,1,1,1,9,37,35,1,1,1,1,15, %T A208673 163,309,126,1,1,1,1,25,640,3593,2751,462,1,1,1,1,41,2503,36095,87501, %U A208673 25493,1716,1,1,1,1,67,9559,362617,2336376,2266155,242845,6435,1,1 %N A208673 Number of words A(n,k), either empty or beginning with the first letter of the k-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A208673 Also the number of (n*k-1)-step walks on k-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that the absolute difference of the dimension indices used in consecutive steps is <= 1. %C A208673 All rows are linear recurrences with constant coefficients and for n > 0 the order of the recurrence is bounded by 2*n-1. For n up to at least 20 this upper bound is exact. - _Andrew Howroyd_, Feb 22 2022 %H A208673 Andrew Howroyd, <a href="/A208673/b208673.txt">Table of n, a(n) for n = 0..1325</a> %e A208673 A(0,0) = A(n,0) = A(0,k) = 1: the empty word. %e A208673 A(2,3) = 5: %e A208673 +------+ +------+ +------+ +------+ +------+ %e A208673 |aabbcc| |aabcbc| |aabccb| |ababcc| |abccba| %e A208673 +------+ +------+ +------+ +------+ +------+ %e A208673 |122222| |122222| |122222| |112222| |111112| %e A208673 |001222| |001122| |001112| |011222| |011122| %e A208673 |000012| |000112| |000122| |000012| |001222| %e A208673 +------+ +------+ +------+ +------+ +------+ %e A208673 |xx | |xx | |xx | |x x | |x x| %e A208673 | xx | | x x | | x x| | x x | | x x | %e A208673 | xx| | x x| | xx | | xx| | xx | %e A208673 +------+ +------+ +------+ +------+ +------+ %e A208673 Square array A(n,k) begins: %e A208673 1, 1, 1, 1, 1, 1, 1, .. %e A208673 1, 1, 1, 1, 1, 1, 1, .. %e A208673 1, 1, 3, 5, 9, 15, 25, .. %e A208673 1, 1, 10, 37, 163, 640, 2503, .. %e A208673 1, 1, 35, 309, 3593, 36095, 362617, .. %e A208673 1, 1, 126, 2751, 87501, 2336376, 62748001, .. %e A208673 1, 1, 462, 25493, 2266155, 164478048, 12085125703, .. %p A208673 b:= proc(t, l) option remember; local n; n:= nops(l); %p A208673 `if`(n<2 or {0}={l[]}, 1, %p A208673 `if`(l[t]>0, b(t, [seq(l[i]-`if`(i=t, 1, 0), i=1..n)]), 0)+ %p A208673 `if`(t<n and l[t+1]>0, %p A208673 b(t+1, [seq(l[i]-`if`(i=t+1, 1, 0), i=1..n)]), 0)+ %p A208673 `if`(t>1 and l[t-1]>0, %p A208673 b(t-1, [seq(l[i]-`if`(i=t-1, 1, 0), i=1..n)]), 0)) %p A208673 end: %p A208673 A:= (n, k)-> `if`(n=0 or k=0, 1, b(1, [n-1, n$(k-1)])): %p A208673 seq(seq(A(n, d-n), n=0..d), d=0..10); %t A208673 b[t_, l_List] := b[t, l] = Module[{n = Length[l]}, If[n < 2 || {0} == Union[l], 1, If[l[[t]] > 0, b[t, Table[l[[i]] - If[i == t, 1, 0], {i, 1, n}]], 0] + If[t < n && l[[t + 1]] > 0, b[t + 1, Table[l[[i]] - If[i == t + 1, 1, 0], {i, 1, n}]], 0] + If[t > 1 && l[[t - 1]] > 0, b[t - 1, Table[l[[i]] - If[i == t - 1, 1, 0], {i, 1, n}]], 0]]]; A[n_, k_] := If[n == 0 || k == 0, 1, b[1, Join[{n - 1}, Array[n&, k - 1]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* _Jean-François Alcover_, Dec 27 2013, translated from Maple *) %o A208673 (PARI) %o A208673 F(u)={my(n=#u); sum(k=1, n,u[k]*binomial(n-1,k-1))} %o A208673 step(u, c)={my(n=#u); vector(n, k, sum(i=max(0, 2*k-c-n), k-1, sum(j=0, n-2*k+i+c, u[k-i+j]*binomial(n-1, 2*k-1-c-i+j)*binomial(k-1, k-i-1)*binomial(k-i+j-c, j) ))) } %o A208673 R(n,k)={my(r=vector(n+1), u=vector(k), v=vector(k)); u[1]=v[1]=r[1]=r[2]=1; for(n=3, #r, u=step(u,1); v=step(v,0)+u; r[n]=F(v)); r} %o A208673 T(n,k)={if(n==0||k==0, 1, R(k,n)[1+k])} \\ _Andrew Howroyd_, Feb 22 2022 %Y A208673 Columns k=0+1, 2-4 give: A000012, A088218, A208675, A212334. %Y A208673 Rows n=0+1, 2-3 give: A000012, A001595, A208674. %Y A208673 Main diagonal gives A351759. %Y A208673 Cf. A208879 (cyclic alphabet), A331562. %K A208673 nonn,tabl %O A208673 0,13 %A A208673 _Alois P. Heinz_, Feb 29 2012