cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208674 Number of words, either empty or beginning with the first letter of the n-ary alphabet, where each letter of the alphabet occurs 3 times and letters of neighboring word positions are equal or neighbors in the alphabet.

This page as a plain text file.
%I A208674 #18 Jun 13 2015 00:54:10
%S A208674 1,1,10,37,163,640,2503,9559,36154,135541,505279,1875592,6941035,
%T A208674 25629211,94478338,347857921,1279622611,4704064120,17284247263,
%U A208674 63484653151,233114307274,855817783741,3141437229271,11529935743528,42314502514051,155283277278547
%N A208674 Number of words, either empty or beginning with the first letter of the n-ary alphabet, where each letter of the alphabet occurs 3 times and letters of neighboring word positions are equal or neighbors in the alphabet.
%C A208674 Also the number of (3*n-1)-step walks on n-dimensional cubic lattice from (1,0,...,0) to (3,3,...,3) with positive unit steps in all dimensions such that the absolute difference of the dimension indices used in consecutive steps is <= 1.
%H A208674 Alois P. Heinz, <a href="/A208674/b208674.txt">Table of n, a(n) for n = 0..500</a>
%H A208674 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-1,-14,-2,4)
%F A208674 G.f.: -(4*x^4+2*x^3+6*x^2-4*x+1) / (4*x^5-2*x^4-14*x^3-x^2+5*x-1).
%e A208674 a(2) = 10 = |{aaabbb, aababb, aabbab, aabbba, abaabb, ababab, ababba, abbaab, abbaba, abbbaa}| with binary alphabet {a,b}.
%e A208674 a(3) = 37 = |{aaabbbccc, aaabbcbcc, aaabbccbc, aaabbcccb, aaabcbbcc, aaabcbcbc, aaabcbccb, aaabccbbc, aaabccbcb, aaabcccbb, aababbccc, aababcbcc, aababccbc, aababcccb, aabbabccc, aabbcccba, aabcbabcc, aabcbccba, aabccbabc, aabccbcba, aabcccbab, aabcccbba, abaabbccc, abaabcbcc, abaabccbc, abaabcccb, abababccc, ababcccba, abbaabccc, abbcccbaa, abcbaabcc, abcbccbaa, abccbaabc, abccbcbaa, abcccbaab, abcccbaba, abcccbbaa}| with ternary alphabet {a,b,c}.
%p A208674 a:= n-> (Matrix(5, (i, j)-> `if`(i=j-1, 1, `if`(i=5, [4, -2,
%p A208674         -14, -1, 5][j], 0)))^n. <<1, 1, 10, 37, 163>>)[1, 1]:
%p A208674 seq(a(n), n=0..30);
%Y A208674 Row n=3 of A208673.
%K A208674 nonn,walk,easy
%O A208674 0,3
%A A208674 _Alois P. Heinz_, Feb 29 2012