cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208675 Number of words, either empty or beginning with the first letter of the ternary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet.

This page as a plain text file.
%I A208675 #59 Aug 22 2025 17:18:57
%S A208675 1,1,5,37,309,2751,25493,242845,2360501,23301307,232834755,2349638259,
%T A208675 23905438725,244889453043,2523373849701,26132595017037,
%U A208675 271826326839477,2838429951771795,29740725671232119,312573076392760183,3294144659048391059,34802392680979707121
%N A208675 Number of words, either empty or beginning with the first letter of the ternary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet.
%C A208675 Also the number of (3*n-1)-step walks on 3-dimensional cubic lattice from (1,0,0) to (n,n,n) with positive unit steps in all dimensions such that the absolute difference of the dimension indices used in consecutive steps is <= 1.
%H A208675 Alois P. Heinz, <a href="/A208675/b208675.txt">Table of n, a(n) for n = 0..960</a>
%H A208675 Armin Straub, <a href="http://dx.doi.org/10.2140/ant.2014.8.1985">Multivariate Apéry numbers and supercongruences of rational functions</a>, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; <a href="https://arxiv.org/abs/1401.0854">arXiv preprint</a>, arXiv:1401.0854 [math.NT], 2014.
%F A208675 From _Michael Somos_, Jun 03 2012: (Start)
%F A208675 a(n) = A108625(n-1, n).
%F A208675 a(n) = Hypergeometric3F2([1-n, -n, n], [1, 1], 1).
%F A208675 (n+1)^2 * (1 -4*n +5*n^2) * a(n+1) = (5 -5*n -26*n^2 +11*n^3 +55*n^4) * a(n) + (n-1)^2 * (2 +6*n +5*n^2) * a(n-1). (End)
%F A208675 a(n) ~ sqrt((5-sqrt(5))/10)/(2*Pi*n) * ((1+sqrt(5))/2)^(5*n). - _Vaclav Kotesovec_, Dec 06 2012. Equivalently, a(n) ~ phi^(5*n - 1/2) / (2 * 5^(1/4) * Pi * n), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Dec 07 2021
%F A208675 exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 15*x^3 + 94*x^4 + 668*x^5 + 5144*x^6 + 41884*x^7 + 355307*x^8 + ... appears to have integer coefficients. Cf. A108628. - _Peter Bala_, Jan 12 2016
%F A208675 From _Peter Bala_, Apr 05 2022: (Start)
%F A208675 a(n) = Sum_{k = 0..n} binomial(n,k)*binomial(n-1,k)*binomial(n+k-1,k).
%F A208675 Using binomial(-n,k) = (-1)^k*binomial(n+k-1,k) for nonnegative k, we have:
%F A208675 a(-n) = Sum_{k = 0..n} binomial(-n,k)*binomial(-n-1,k)*binomial(-n+k-1,k).
%F A208675 a(-n) = Sum_{k = 0..n} (-1)^k* binomial(n+k-1,k)*binomial(n+k,k)*binomial(n,k)
%F A208675 a(-n) = (-1)^n*A108628(n-1), for n >= 1.
%F A208675 a(n) = Sum_{k = 1..n} binomial(n,k)*binomial(n-1,k-1)*binomial(n+k-1,k-1) for n >= 1.
%F A208675 Equivalently, a(n) = [(x^n)*(y*z)^(n-1)] (x + y + z)^n*(x + y)^(n-1)*(y + z)^(n-1) for n >= 1.
%F A208675 a(n) = Sum_{k = 0..n-1} (-1)^k*binomial(n-1,k)*binomial(2*n-k-1,n-k)^2.
%F A208675 a(n) = (1/5)*(A005258(n) + 2*A005258(n-1)) for n >= 1.
%F A208675 a(n) = [x^n] 1/(1 - x)*P(n-1,(1 + x)/(1 - x)) for n >= 1, where P(n,x) denotes the n-th Legendre polynomial. Compare with A005258(n) = [x^n] 1/(1 - x)*P(n,(1 + x)/(1 - x)).
%F A208675 a(n) = B(n,n-1,n-1) in the notation of Straub, equation 24. Hence
%F A208675 a(n) = [(x^n)*(y*z)^(n-1)] 1/(1 - x - y - z + x*z + y*z - x*y*z) for n >= 1.
%F A208675 The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.
%F A208675 Conjectures:
%F A208675 1) a(n) = [(x*y)^n*z^(n-1)] 1/(1 - x - y - z + x*y + x*y*z) for n >= 1.
%F A208675 2) a(n) = - [(x*z)^(n-1)*(y^n)] 1/(1 + y + z + x*y + y*z + x*z + x*y*z) for n >= 1.
%F A208675 3) a(n) = [x^(n-1)*(y*z)^n] 1/(1 - x - x*y - y*z - x*z - x*y*z) for n >= 1. (End)
%F A208675 From _Peter Bala_, Mar 17 2023: (Start)
%F A208675 For n >= 1:
%F A208675 a(n) = Sum_{k = 0..n} ((n-k)/(n+k))*binomial(n,k)^2*binomial(n+k,k).
%F A208675 a(n) = Sum_{k = 0..n} (-1)^(n+k-1) * ((n-k)/(n+k)) * binomial(n,k) * binomial(n+k,k)^2. (End)
%e A208675 a(2) = 5 = |{aabbcc, aabcbc, aabccb, ababcc, abccba}|.
%e A208675 a(3) = 37 = |{aaabbbccc, aaabbcbcc, aaabbccbc, aaabbcccb, aaabcbbcc, aaabcbcbc, aaabcbccb, aaabccbbc, aaabccbcb, aaabcccbb, aababbccc, aababcbcc, aababccbc, aababcccb, aabbabccc, aabbcccba, aabcbabcc, aabcbccba, aabccbabc, aabccbcba, aabcccbab, aabcccbba, abaabbccc, abaabcbcc, abaabccbc, abaabcccb, abababccc, ababcccba, abbaabccc, abbcccbaa, abcbaabcc, abcbccbaa, abccbaabc, abccbcbaa, abcccbaab, abcccbaba, abcccbbaa}|.
%p A208675 a:= n-> add(binomial(n-1, k)^2 *binomial(2*n-1-k, n-k), k=0..n):
%p A208675 seq(a(n), n=0..30);  # _Alois P. Heinz_, Jun 26 2012
%t A208675 a[n_]:= HypergeometricPFQ[{1-n,-n,n}, {1,1}, 1] (* _Michael Somos_, Jun 03 2012 *)
%o A208675 (Magma)
%o A208675 A208675:= func< n | (&+[Binomial(n,j)*Binomial(n-1,j)*Binomial(n+j-1,j): j in [0..2*n]]) >;
%o A208675 [A208675(n): n in [0..30]]; // _G. C. Greubel_, Oct 05 2023
%o A208675 (SageMath)
%o A208675 def A208675(n): return sum(binomial(n,j)*binomial(n-1,j)*binomial(n+j-1,j) for j in range(n+1))
%o A208675 [A208675(n) for n in range(31)] # _G. C. Greubel_, Oct 05 2023
%Y A208675 Column k=3 of A208673.
%Y A208675 Cf. A000108, A001622, A005258, A108625, A108628, A271777.
%K A208675 nonn,easy
%O A208675 0,3
%A A208675 _Alois P. Heinz_, Feb 29 2012