A208688 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 1 and 1 0 1 vertically.
2, 4, 4, 6, 16, 6, 10, 36, 36, 9, 16, 100, 78, 81, 14, 26, 256, 282, 189, 196, 21, 42, 676, 768, 927, 490, 441, 31, 68, 1764, 2430, 2889, 3430, 1113, 961, 46, 110, 4624, 7086, 11727, 12096, 11067, 2449, 2116, 68, 178, 12100, 21588, 40581, 66094, 41013, 34627
Offset: 1
Examples
Some solutions for n=4 k=3 ..1..1..0....0..1..1....0..1..1....0..1..0....0..1..1....1..1..1....1..0..1 ..0..1..0....0..1..1....0..1..0....0..1..0....0..1..1....1..1..1....1..1..0 ..0..1..0....0..1..1....1..1..0....0..1..1....1..1..0....1..1..1....1..0..0 ..1..1..0....0..1..1....0..1..1....1..1..0....0..1..0....0..1..0....1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1360
Crossrefs
Formula
Empirical for row n:
n=1: a(k)=a(k-1)+a(k-2)
n=2: a(k)=2*a(k-1)+2*a(k-2)-a(k-3)
n=3: a(k)=2*a(k-1)+4*a(k-2)-3*a(k-3)
n=4: a(k)=a(k-1)+10*a(k-2)+2*a(k-3)-10*a(k-4)
n=5: a(k)=a(k-1)+17*a(k-2)+4*a(k-3)-32*a(k-4)
n=6: a(k)=a(k-1)+26*a(k-2)+6*a(k-3)-78*a(k-4)
n=7: a(k)=a(k-1)+39*a(k-2)+9*a(k-3)-180*a(k-4)
Comments