A208691 Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 1 and 1 0 1 vertically.
14, 196, 490, 3430, 12096, 66094, 269766, 1331988, 5795314, 27403166, 122618944, 569030406, 2577715070, 11864806436, 54038278042, 247841874742, 1131464944960, 5181256121790, 23678302787734, 108354576646260, 495403870286178
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..1..1..1....1..1..1..1....1..0..1..1....1..1..0..1....1..0..1..0 ..1..0..1..1....0..1..0..1....1..0..1..1....0..1..1..0....1..1..1..0 ..1..0..1..1....0..1..0..0....1..0..1..0....0..1..0..0....1..0..1..1 ..1..1..1..1....1..1..1..0....1..1..1..0....0..1..0..0....1..0..1..0 ..1..0..1..0....0..1..0..1....1..0..1..0....0..1..0..1....1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A208688.
Formula
Empirical: a(n) = a(n-1) + 17*a(n-2) + 4*a(n-3) - 32*a(n-4).
Empirical g.f.: 14*x*(1 + 13*x + 4*x^2 - 32*x^3) / (1 - x - 17*x^2 - 4*x^3 + 32*x^4). - Colin Barker, Jul 05 2018
Comments