cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208705 Number of n X 4 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

8, 100, 1268, 16084, 204020, 2587924, 32826932, 416398420, 5281871732, 66998738836, 849856117940, 10780134577876, 136742325040628, 1734529687216660, 22001916633654068, 279086797488636244
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Comments

Column 4 of A208709.

Examples

			Some solutions for n=4:
..0..1..1..1....0..0..0..0....0..1..0..1....0..1..1..1....0..1..1..0
..0..0..1..1....0..1..1..0....0..0..1..0....1..0..0..0....0..0..1..0
..1..0..0..1....1..0..1..1....0..1..1..1....0..1..1..1....0..0..1..1
..0..1..1..1....1..1..0..1....1..0..1..1....1..0..0..0....1..0..0..0
		

Crossrefs

Formula

Empirical: a(n) = 13*a(n-1) - 4*a(n-2).
Conjectures from Colin Barker, Jul 06 2018: (Start)
G.f.: 4*x*(2 - x) / (1 - 13*x + 4*x^2).
a(n) = (2^(-1-n)*((13-3*sqrt(17))^n*(-1+sqrt(17)) + (1+sqrt(17))*(13+3*sqrt(17))^n)) / sqrt(17).
(End)