cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A208704 Number of nX3 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

4, 28, 196, 1372, 9604, 67228, 470596, 3294172, 23059204, 161414428, 1129900996, 7909306972, 55365148804, 387556041628, 2712892291396, 18990246039772, 132931722278404, 930522055948828, 6513654391641796, 45595580741492572
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Comments

Column 3 of A208709.

Examples

			Some solutions for n=4
..0..0..0....0..1..1....0..0..1....0..1..1....0..1..1....0..1..1....0..0..1
..1..0..1....1..0..1....0..0..1....0..1..1....1..0..0....1..0..1....0..1..1
..1..0..1....0..1..0....0..0..1....0..1..1....1..1..1....1..1..1....0..0..0
..1..0..1....0..1..0....1..1..1....0..1..1....1..0..1....1..0..1....0..1..0
		

Crossrefs

Cf. A270471.

Formula

Empirical: a(n) = 7*a(n-1).
Empirical: a(n) = (A198480(n)+1)*2 = (A024075(n)+1)*4. [Martin Ettl, Nov 09 2012; revised Nov 13 2012]

A208703 Number of n X n 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

1, 8, 196, 16084, 4226368, 3613193828, 10001404535216, 89755737081698964, 2610569024927748701352, 246105734855228896970291844, 75198808251676193628977268566832, 74474161314983311603786393034039933768
Offset: 1

Views

Author

R. H. Hardin Mar 01 2012

Keywords

Comments

Diagonal of A208709

Examples

			Some solutions for n=4
..0..0..1..0....0..0..0..1....0..1..0..1....0..0..0..1....0..1..1..0
..0..0..1..0....1..0..1..1....1..0..1..1....1..0..0..0....0..0..1..0
..1..1..0..0....0..0..1..0....0..0..0..1....1..1..1..1....0..0..1..1
..1..1..0..0....0..1..0..0....0..1..0..1....1..0..1..1....1..0..0..0
		

A208705 Number of n X 4 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

8, 100, 1268, 16084, 204020, 2587924, 32826932, 416398420, 5281871732, 66998738836, 849856117940, 10780134577876, 136742325040628, 1734529687216660, 22001916633654068, 279086797488636244
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Comments

Column 4 of A208709.

Examples

			Some solutions for n=4:
..0..1..1..1....0..0..0..0....0..1..0..1....0..1..1..1....0..1..1..0
..0..0..1..1....0..1..1..0....0..0..1..0....1..0..0..0....0..0..1..0
..1..0..0..1....1..0..1..1....0..1..1..1....0..1..1..1....0..0..1..1
..0..1..1..1....1..1..0..1....1..0..1..1....1..0..0..0....1..0..0..0
		

Crossrefs

Formula

Empirical: a(n) = 13*a(n-1) - 4*a(n-2).
Conjectures from Colin Barker, Jul 06 2018: (Start)
G.f.: 4*x*(2 - x) / (1 - 13*x + 4*x^2).
a(n) = (2^(-1-n)*((13-3*sqrt(17))^n*(-1+sqrt(17)) + (1+sqrt(17))*(13+3*sqrt(17))^n)) / sqrt(17).
(End)

A208706 Number of n X 5 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

16, 356, 8128, 185344, 4226368, 96373248, 2197585152, 50111214592, 1142678737920, 26056337063936, 594158864306176, 13548518165364736, 308944889161203712, 7044825373067575296, 160642128347753938944
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Comments

Column 5 of A208709.

Examples

			Some solutions for n=4:
..0..0..1..0..0....0..0..1..0..0....0..0..1..1..1....0..1..1..0..1
..1..1..0..1..0....1..1..1..1..0....0..1..0..0..0....1..0..1..0..0
..1..0..1..1..0....1..0..1..1..0....0..0..1..0..0....1..0..1..1..1
..0..1..0..1..0....1..1..0..0..1....1..1..1..0..1....0..0..1..0..0
		

Crossrefs

Cf. A208709.

Formula

Empirical: a(n) = 24*a(n-1) - 28*a(n-2) + 16*a(n-3) for n>4.
Empirical g.f.: 4*x*(4 - 7*x + 8*x^2 - 4*x^3) / (1 - 24*x + 28*x^2 - 16*x^3). - Colin Barker, Jul 06 2018

A208707 Number of n X 6 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

32, 1268, 52184, 2142580, 87985748, 3613193828, 148378294612, 6093257064980, 250223806647572, 10275613313012692, 421975152458430164, 17328700863708613076, 711615060447141699796, 29222963581518749645012
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Comments

Column 6 of A208709.

Examples

			Some solutions for n=4:
..0..0..1..0..1..1....0..0..0..0..0..1....0..0..0..1..0..1....0..0..0..1..0..0
..0..0..0..0..1..0....1..0..1..0..1..1....1..0..1..1..0..1....0..1..1..0..1..1
..1..0..1..0..0..1....1..1..1..1..0..1....0..0..1..0..1..1....0..1..0..0..0..1
..1..0..1..0..1..0....0..1..0..0..1..0....1..0..0..1..0..0....0..1..1..0..1..0
		

Crossrefs

Cf. A208709.

Formula

Empirical: a(n) = 45*a(n-1) - 168*a(n-2) + 272*a(n-3) - 324*a(n-4) + 240*a(n-5) - 64*a(n-6) for n>7.
Empirical g.f.: 4*x*(8 - 43*x + 125*x^2 - 345*x^3 + 508*x^4 - 572*x^5 + 400*x^6) / ((1 - x)*(1 - 44*x + 124*x^2 - 148*x^3 + 176*x^4 - 64*x^5)). - Colin Barker, Jul 06 2018

A208708 Number of nX7 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

64, 4516, 334948, 24754628, 1830045552, 135288700496, 10001404535216, 739367693888784, 54658781788350480, 4040726220144359312, 298716287704524626960, 22083015695332916533648, 1632517550173528777448208
Offset: 1

Views

Author

R. H. Hardin Mar 01 2012

Keywords

Comments

Column 7 of A208709

Examples

			Some solutions for n=4
..0..0..0..1..0..1..0....0..0..1..0..1..1..1....0..0..0..0..0..1..1
..0..1..1..0..1..1..0....0..0..1..1..0..1..1....0..1..0..1..1..0..1
..1..0..0..0..1..0..0....0..1..0..0..1..0..0....1..1..1..0..0..1..0
..1..1..0..1..0..1..0....0..0..1..0..0..1..1....0..1..0..1..1..1..1
		

Formula

Empirical: a(n) = 83*a(n-1) -710*a(n-2) +3004*a(n-3) -7952*a(n-4) +16752*a(n-5) -27360*a(n-6) +33984*a(n-7) -26368*a(n-8) for n>10

A208710 Number of 3 X n 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

4, 32, 196, 1268, 8128, 52184, 334948, 2149988, 13800400, 88582472, 568596052, 3649722932, 23426960800, 150373741496, 965223885508, 6195610615940, 39768587869168, 255267911291816, 1638522010126516, 10517398618896212
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Comments

Row 3 of A208709.

Examples

			Some solutions for n=4:
  0 0 0 1     0 0 1 0     0 1 0 1     0 1 1 0     0 0 1 0
  0 1 0 1     0 0 1 1     0 1 0 0     1 0 0 1     1 1 1 0
  1 0 0 1     1 0 0 0     0 1 1 0     1 0 1 1     0 1 0 0
		

Crossrefs

Cf. A208709.

Formula

Empirical: a(n) = 5*a(n-1) + 9*a(n-2) + a(n-3) - 2*a(n-4).
Empirical g.f.: 4*x*(1 + 3*x - x^3) / ((1 + x)*(1 - 6*x - 3*x^2 + 2*x^3)). - Colin Barker, Jul 06 2018

A208711 Number of 4Xn 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

8, 128, 1372, 16084, 185344, 2142580, 24754628, 286034292, 3305009328, 38188137788, 441249345280, 5098468022268, 58910854227068, 680692462409636, 7865141904908344, 90878716312611076, 1050068921631026592
Offset: 1

Views

Author

R. H. Hardin Mar 01 2012

Keywords

Comments

Row 4 of A208709

Examples

			Some solutions for n=4
..0..1..0..1....0..1..0..1....0..1..1..0....0..0..0..1....0..0..0..1
..1..0..1..1....1..1..0..1....0..0..1..0....1..0..1..1....1..0..0..0
..0..0..0..1....0..1..1..0....0..0..1..1....0..0..1..0....1..1..1..1
..0..1..0..1....0..0..1..1....1..0..0..0....0..1..0..0....1..0..1..1
		

Formula

Empirical: a(n) = 9*a(n-1) +31*a(n-2) -11*a(n-3) -71*a(n-4) -a(n-5) +38*a(n-6) -8*a(n-7) for n>9

A208712 Number of 5Xn 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

16, 512, 9604, 204020, 4226368, 87985748, 1830045552, 38070302740, 791949216708, 16474443378336, 342707611610988, 7129134738677660, 148302981848252912, 3085055246536395480, 64176496980568384684, 1335023990202619369508
Offset: 1

Views

Author

R. H. Hardin Mar 01 2012

Keywords

Comments

Row 5 of A208709

Examples

			Some solutions for n=4
..0..0..1..0....0..0..1..1....0..1..0..0....0..0..1..0....0..0..1..0
..0..0..1..1....0..1..0..0....1..1..1..0....0..1..1..1....1..1..1..1
..1..0..0..0....0..1..1..1....1..0..1..1....1..0..1..1....0..1..0..1
..0..1..0..1....1..0..0..1....0..1..0..1....1..1..0..1....0..1..0..0
..0..0..1..0....0..1..1..0....0..0..1..1....1..1..0..1....0..1..1..0
		

Formula

Empirical: a(n) = 17*a(n-1) +95*a(n-2) -269*a(n-3) -1372*a(n-4) +1500*a(n-5) +6585*a(n-6) -5267*a(n-7) -11175*a(n-8) +10357*a(n-9) +1757*a(n-10) -3001*a(n-11) +237*a(n-12) +207*a(n-13) -30*a(n-14) for n>17

A208713 Number of 6Xn 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

32, 2048, 67228, 2587924, 96373248, 3613193828, 135288700496, 5066922301172, 189760457060980, 7106753308593540, 266155856593675476, 9967837469474701148, 373306752240786865244, 13980758919336720329676, 523595189388352085042024
Offset: 1

Views

Author

R. H. Hardin Mar 01 2012

Keywords

Comments

Row 6 of A208709

Examples

			Some solutions for n=4
..0..1..0..1....0..1..1..1....0..0..0..0....0..1..1..0....0..0..0..1
..0..0..1..0....1..0..1..1....0..1..0..1....1..0..1..1....0..1..0..0
..1..1..1..0....1..1..0..1....0..1..1..0....0..1..0..1....1..1..0..0
..0..1..1..0....1..1..0..1....1..0..0..1....0..0..1..1....0..0..1..1
..1..0..0..1....0..1..1..0....1..0..0..1....1..0..0..1....0..1..0..1
..1..0..1..1....0..0..1..1....0..1..1..1....0..1..1..1....1..0..1..0
		

Formula

Empirical: a(n) = 33*a(n-1) +263*a(n-2) -3223*a(n-3) -18036*a(n-4) +125510*a(n-5) +521961*a(n-6) -2559903*a(n-7) -7083315*a(n-8) +29279065*a(n-9) +41849338*a(n-10) -177571622*a(n-11) -69714760*a(n-12) +472051228*a(n-13) -17024841*a(n-14) -616904041*a(n-15) +139939476*a(n-16) +429455960*a(n-17) -134077368*a(n-18) -166807014*a(n-19) +56749363*a(n-20) +37221787*a(n-21) -12479641*a(n-22) -4662939*a(n-23) +1470709*a(n-24) +288889*a(n-25) -88672*a(n-26) -5330*a(n-27) +2180*a(n-28) -112*a(n-29) for n>33
Showing 1-10 of 11 results. Next