cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208714 Number of 7Xn 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

This page as a plain text file.
%I A208714 #7 Jul 22 2025 21:29:40
%S A208714 64,8192,470596,32826932,2197585152,148378294612,10001404535216,
%T A208714 674377684576244,45469018462135036,3065730121209679464,
%U A208714 206705069561616591752,13936976009963742623304,939692881392900459541604
%N A208714 Number of 7Xn 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.
%C A208714 Row 7 of A208709
%H A208714 R. H. Hardin, <a href="/A208714/b208714.txt">Table of n, a(n) for n = 1..210</a>
%F A208714 Empirical: a(n) = 65*a(n-1) +627*a(n-2) -30321*a(n-3) -153077*a(n-4) +5945575*a(n-5) +18847620*a(n-6) -640746940*a(n-7) -1246405727*a(n-8) +41621674173*a(n-9) +41928529920*a(n-10) -1682537371818*a(n-11) -485939889784*a(n-12) +42470072496810*a(n-13) -7922558403350*a(n-14) -670631027035048*a(n-15) +263270391431374*a(n-16) +6891425474219622*a(n-17) -2981854723927120*a(n-18) -47958233567951820*a(n-19) +19158642427965583*a(n-20) +233689019176978229*a(n-21) -80444594354181108*a(n-22) -818697039909889268*a(n-23) +236932769597213271*a(n-24) +2103792244691072929*a(n-25) -510796859975575345*a(n-26) -4022353774281500743*a(n-27) +828086071154701580*a(n-28) +5775946939404815328*a(n-29) -1026257054012229820*a(n-30) -6261507257443570876*a(n-31) +981060297866884393*a(n-32) +5132543866827487875*a(n-33) -726522411180908276*a(n-34) -3176069805803038448*a(n-35) +417716564447897336*a(n-36) +1476876535603317556*a(n-37) -186762327908567644*a(n-38) -511997227744881276*a(n-39) +64892478481747971*a(n-40) +130748670223110539*a(n-41) -17389966007346019*a(n-42) -24152905795977169*a(n-43) +3524834326494224*a(n-44) +3136398901415920*a(n-45) -522475730056453*a(n-46) -272599169920989*a(n-47) +53880467491068*a(n-48) +14382008342084*a(n-49) -3588181598882*a(n-50) -348878204572*a(n-51) +135362926032*a(n-52) -2053245952*a(n-53) -2067930688*a(n-54) +201866496*a(n-55) -5564416*a(n-56) for n>61
%e A208714 Some solutions for n=4
%e A208714 ..0..1..0..0....0..1..0..0....0..1..0..1....0..0..0..1....0..1..0..0
%e A208714 ..1..1..1..1....1..1..0..0....0..1..0..0....0..1..1..1....1..0..1..1
%e A208714 ..0..0..1..1....0..0..1..1....0..1..1..0....1..0..0..1....1..0..0..1
%e A208714 ..1..1..0..0....1..0..1..1....0..0..1..0....1..1..1..0....1..1..1..0
%e A208714 ..1..0..1..1....0..0..1..0....0..0..1..1....0..1..0..0....0..0..0..1
%e A208714 ..1..1..0..0....0..1..0..0....1..0..0..0....0..1..0..0....0..1..0..1
%e A208714 ..1..0..1..1....1..1..1..1....0..1..0..1....0..1..1..1....0..0..0..0
%K A208714 nonn
%O A208714 1,1
%A A208714 _R. H. Hardin_ Mar 01 2012