cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208732 Sequence related to Kashaev's invariant for the (9,2)-torus knot.

This page as a plain text file.
%I A208732 #12 Jan 28 2013 13:21:19
%S A208732 1,4,36,664,21276,1050664,73939356,7024817944,866058563196,
%T A208732 134419597387144,25644210185987676,5897980691609567224,
%U A208732 1609292585008090909116,513950106691675965931624,189914985024774644611299996
%N A208732 Sequence related to Kashaev's invariant for the (9,2)-torus knot.
%C A208732 This is sequence b_n(9) in Table 2 of Hikami 2003.
%H A208732 K. Hikami, <a href="http://www.emis.de/journals/EM/expmath/volumes/12/12.3/Hikami.pdf">Volume Conjecture and Asymptotic Expansion of q-Series</a>, Experimental Mathematics Vol. 12, Issue 3 (2003).
%F A208732 a(n) = (49/72)^n*sum {k = 0..n} binomial(n,k)*A208681(k+1)/49^k.
%F A208732 Conjectural S-fraction for the o.g.f.: 1/(1-4*x/(1-5*x/(1-17*x/(1-19*x/(1-...-1/2*n*(9*n-1)*x/(1-1/2*n*(9*n+1)*x/(1- ....
%Y A208732 Cf. A079144, A208681, A208730, A208731, A208735.
%K A208732 nonn,easy
%O A208732 0,2
%A A208732 _Peter Bala_, Mar 01 2012