cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208737 Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with no 3-element antichain.

This page as a plain text file.
%I A208737 #32 May 21 2021 08:09:47
%S A208737 0,0,0,1,7,37,175,778,3325,13837,56524,227866,909832,3607294,14227447,
%T A208737 55894252,218937532,855650749,3338323915,13007422705,50631143323,
%U A208737 196928737582,765495534433,2974251390529,11552064922624,44856304154086
%N A208737 Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with no 3-element antichain.
%C A208737 Uniform used in the sense of Retakh, Serconek and Wilson.  We use Stanley's definition of graded poset: all maximal chains have the same length n (which also implies all maximal elements have maximal rank.)
%D A208737 R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
%H A208737 Vincenzo Librandi, <a href="/A208737/b208737.txt">Table of n, a(n) for n = 0..1000</a>
%H A208737 V. Retakh, S. Serconek, and R. Wilson, <a href="http://arxiv.org/abs/1010.6295">Hilbert Series of Algebras Associated to Directed Graphs and Order Homology</a>, arXiv:1010.6295 [math.RA], 2010-2011.
%H A208737 Wikipedia, <a href="http://en.wikipedia.org/wiki/Graded_poset">Graded poset</a>
%H A208737 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (10,-36,57,-39,9).
%F A208737 a(n) = 10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5), a(1) = 0, a(2) = 0, a(3) = 1, a(4) = 7, a(5) = 37.
%F A208737 G.f: (x^3 - 3*x^4 + 3*x^5)/(1 - 10*x + 36*x^2 - 57*x^3 + 39*x^4 - 9*x^5); (x^3*(1 - 3*x + 3*x^2)) / ((1 - x) (1 - 3*x) (1 - 6*x + 9*x^2 - 3*x^3)).
%F A208737 a(n) = A124292(n) - A124302(n).
%t A208737 Join[{0}, LinearRecurrence[{10, -36, 57, -39, 9}, {0, 0, 1, 7, 37}, 40]]
%o A208737 (Python)
%o A208737 def a(n, d={0:0,1:0,2:0,3:1,4:7,5:37}):
%o A208737     if n in d:
%o A208737         return d[n]
%o A208737     d[n]=10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5)
%o A208737     return d[n]
%Y A208737 Cf. A208736, A206901, A206902, A206947-A206950, A001906, A025192, A081567, A124302, A124292, A088305, A086405, A012781.
%K A208737 nonn,easy
%O A208737 0,5
%A A208737 _David Nacin_, Mar 01 2012