cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208738 Number of multisets occurring as the peak heights multiset of a Dyck n-path.

This page as a plain text file.
%I A208738 #42 May 22 2025 10:21:35
%S A208738 1,1,2,4,9,20,45,98,211,445,927,1909,3901,7920,16011,32260,64852,
%T A208738 130157,260932,522691,1046489,2094438,4190798,8384100,16771453,
%U A208738 33547094,67099568,134205996,268420714,536852452,1073718799,2147455019,4294931825,8589890772
%N A208738 Number of multisets occurring as the peak heights multiset of a Dyck n-path.
%C A208738 We use the definition given by Callan and Deutsch (see reference).  A Dyck n-path is a lattice path of n upsteps U (changing by (1,1)) and n downsteps D (changing by (1,-1)) that starts at the origin and never goes below the x-axis.  A peak is an occurrence of U D and the peak height is the y-coordinate of the vertex between its U and D.
%C A208738 Also the number of nonempty multisets S of positive integers satisfying max(S) + |S| - 1 <= n  <= sum(S).
%H A208738 Vincenzo Librandi, <a href="/A208738/b208738.txt">Table of n, a(n) for n = 0..1000</a>
%H A208738 David Callan and Emeric Deutsch, <a href="https://www.jstor.org/stable/10.4169/amer.math.monthly.119.02.161">Problems and Solutions: 11624</a>, The Amer. Math. Monthly 119 (2012), no. 2, 161-162.
%H A208738 Manosij Ghosh Dastidar and Michael Wallner, <a href="https://arxiv.org/abs/2402.17849">Bijections and congruences involving lattice paths and integer compositions</a>, arXiv:2402.17849 [math.CO], 2024. See p. 14.
%F A208738 a(n) = 2^n - A000070(n-1).
%F A208738 a(n) = 2*a(n-1) + A058884(n+1).
%F A208738 G.f.: 1/(1-2*x) - (x/(1-x)) * Product_{m>=1} 1/(1-x^m).
%e A208738 For n=2 the possibilities are UDUD, UUDD giving us multisets of {1,1} and {2} respectively. There are two distinct multisets so a(2) = 2.
%p A208738 a:= proc(n) a(n):= `if`(n=0, 1, a(n-1)+2^(n-1)-combinat[numbpart](n-1)) end:
%p A208738 seq(a(n), n=0..33);  # _Alois P. Heinz_, Feb 14 2024
%t A208738 Table[2^(n) -  Sum[PartitionsP[k], {k, 0, n - 1}], {n, 1, 40}]
%o A208738 (Python)
%o A208738 #Returns all possible peak heights multisets
%o A208738 def peakheightsmultisets(n):
%o A208738  #Making all possible paths
%o A208738  allpaths=list()
%o A208738  combinst=itertools.combinations(range(2*n),n)
%o A208738  for tup in combinst:
%o A208738   a=[]
%o A208738   for i in range(2*n):
%o A208738    if i in tup:
%o A208738     a.append(1)
%o A208738    else:
%o A208738     a.append(-1)
%o A208738   allpaths.append(tuple(a))
%o A208738  #Now we take Dyck paths and form multisets as we go
%o A208738  output=set()
%o A208738  for x in allpaths:
%o A208738   include=True
%o A208738   peaklist=[]
%o A208738   total=0
%o A208738   for unit in x:
%o A208738    if unit==-1 and lastunit==1:
%o A208738     peaklist.append(total)
%o A208738    total+=unit
%o A208738    if total < 0:
%o A208738     include=False
%o A208738     break
%o A208738    lastunit=unit
%o A208738   if include:
%o A208738    output.add(tuple(sorted(peaklist)))
%o A208738  return output
%o A208738 (Python)
%o A208738 #Using peakheightsmultisets(n)
%o A208738 def a(n):
%o A208738  return len(peakheightsmultisets(n))
%Y A208738 Cf. A000041, A000070, A000108, A058884.
%Y A208738 Partial differences give A208739.
%K A208738 nonn
%O A208738 0,3
%A A208738 _David Nacin_, Mar 01 2012
%E A208738 a(0)=1 prepended by _Alois P. Heinz_, Feb 14 2024