cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208741 Triangular array read by rows. T(n,k) is the number of sets of exactly k distinct binary words with a total of n letters.

This page as a plain text file.
%I A208741 #57 Feb 22 2023 09:54:50
%S A208741 2,4,1,8,8,16,22,4,32,64,20,64,156,84,6,128,384,264,40,256,888,784,
%T A208741 189,4,512,2048,2152,704,50,1024,4592,5664,2384,272,1,2048,10240,
%U A208741 14368,7328,1232,32,4096,22496,35568,21382,4704,248
%N A208741 Triangular array read by rows.  T(n,k) is the number of sets of exactly k distinct binary words with a total of n letters.
%C A208741 Equivalently, T(n,k) is the number of integer partitions of n into distinct parts with two types of 1's, four types of 2's, ... , 2^i types of i's,...; where k is the number of summands (of any type).
%C A208741 Row sums = A102866.
%C A208741 Row lengths increase by 1 at n=A061168(offset).
%H A208741 Alois P. Heinz, <a href="/A208741/b208741.txt">Rows n = 0..300, flattened</a>
%H A208741 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 64
%F A208741 O.g.f.: Product_{i>=1} (1 + y*x^i)^(2^i).
%e A208741 T(3,2) = 8 because we have: {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}; 2 word languages with total length 3.
%e A208741 Triangle T(n,k) begins:
%e A208741    2;
%e A208741    4,     1;
%e A208741    8,     8;
%e A208741   16,    22,    4;
%e A208741   32,    64,   20;
%e A208741   64,   156,   84,   6;
%e A208741   ...
%p A208741 h:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
%p A208741       add(h(n-i*j, i-1)*binomial(2^i, j)*x^j, j=0..n/i))))
%p A208741     end:
%p A208741 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(h(n$2)):
%p A208741 seq(T(n), n=1..15);  # _Alois P. Heinz_, Sep 24 2017
%t A208741 nn=12; p=Product[(1+y x^i)^(2^i), {i,1,nn}]; f[list_] := Select[list, #>0&]; Map[f, Drop[CoefficientList[Series[p[x,y], {x,0,nn}], {x,y}], 1]]//Flatten
%Y A208741 Cf. A102866, A209406, A360634.
%K A208741 nonn,tabf
%O A208741 1,1
%A A208741 _Geoffrey Critzer_, Mar 08 2012